{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP where
open import FOTC.Base
open import FOTC.Data.Nat
import FOTC.Data.Nat.Induction.Acc.WF-ATP
open FOTC.Data.Nat.Induction.Acc.WF-ATP.<-WF using ( <-wf )
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Induction.WF
open import FOTC.Program.McCarthy91.WF-Relation
open import FOTC.Program.McCarthy91.WF-Relation.PropertiesATP
open module InvImg =
FOTC.Induction.WF.InverseImage {N} {N} {_<_} ◁-fn-N
◁-wf : WellFounded _◁_
◁-wf Nn = wellFounded <-wf Nn
◁-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m ◁ n → A m) → A n) →
∀ {n} → N n → A n
◁-wfind A = WellFoundedInduction ◁-wf