{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Induction.Acc.WF-ATP where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.Type
open import FOTC.Induction.WF
module <-WF where
<-wf : WellFounded _<_
<-wf Nn = acc (helper Nn)
where
helper : ∀ {n m} → N n → N m → m < n → Acc N _<_ m
helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0)
helper (nsucc _) nzero 0<Sn = acc (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn =
acc (λ {m'} Nm' m'<Sm →
let m<n : m < n
m<n = Sx<Sy→x<y Sm<Sn
m'<n : m' < n
m'<n = case (λ m'<m → <-trans Nm' Nm Nn m'<m m<n)
(λ m'≡m → x≡y→y<z→x<z m'≡m m<n)
(x<Sy→x<y∨x≡y Nm' Nm m'<Sm)
in helper Nn Nm' m'<n
)
<-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) →
∀ {n} → N n → A n
<-wfind A = WellFoundedInduction <-wf
module <-WF' where
<-wf : WellFounded {N} _<_
<-wf nzero = acc (λ Nm m<0 → ⊥-elim (x<0→⊥ Nm m<0))
<-wf (nsucc Nn) = acc (λ Nm m<Sn → helper Nm Nn (<-wf Nn)
(x<Sy→x≤y Nm Nn m<Sn))
where
helper : ∀ {n m} → N n → N m → Acc N _<_ m → n ≤ m → Acc N _<_ n
helper {n} {m} Nn Nm (acc h) n≤m = case (λ n<m → h Nn n<m)
(λ n≡m → helper₁ (sym n≡m) (acc h))
(x≤y→x<y∨x≡y Nn Nm n≤m)
where
helper₁ : ∀ {a b} → a ≡ b → Acc N _<_ a → Acc N _<_ b
helper₁ refl h = h