{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Program.GCD.Partial.CorrectnessProof where
open import LTC-PCF.Base
open import LTC-PCF.Data.Nat.Divisibility.NotBy0.Properties
using ( 0∤x ; x∣S→x≤S )
open import LTC-PCF.Data.Nat.Type
open import LTC-PCF.Program.GCD.Partial.CommonDivisor using ( gcdCD )
open import LTC-PCF.Program.GCD.Partial.Definitions using ( x≢0≢y ; gcdSpec )
open import LTC-PCF.Program.GCD.Partial.Divisible using ( gcdDivisible )
open import LTC-PCF.Program.GCD.Partial.GCD using ( gcd )
import LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor
open module GreatestAnyCommonDivisor =
LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor x∣S→x≤S 0∤x
using ( gcdGACD )
open import LTC-PCF.Program.GCD.Partial.Totality using ( gcd-N )
gcdCorrect : ∀ {m n} → N m → N n → x≢0≢y m n → gcdSpec m n (gcd m n)
gcdCorrect Nm Nn m≢0≢n = gcdCD Nm Nn m≢0≢n
, gcdGACD (gcd-N Nm Nn m≢0≢n)
(gcdCD Nm Nn m≢0≢n)
(gcdDivisible Nm Nn m≢0≢n)