------------------------------------------------------------------------------
-- Totality properties of the division
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Program.Division.Totality where
open import LTC-PCF.Base
open import LTC-PCF.Data.Nat
open import LTC-PCF.Data.Nat.Inequalities
open import LTC-PCF.Program.Division.ConversionRules
open import LTC-PCF.Program.Division.Division
open import LTC-PCF.Program.Division.Specification
------------------------------------------------------------------------------
-- The division is total when the dividend is less than the divisor.
div-x<y-N : ∀ {i j} → i < j → N (div i j)
div-x<y-N i<j = subst N (sym (div-x<y i<j)) nzero
-- The division is total when the dividend is greater or equal than
-- the divisor.
-- N (div (i ∸ j) j) i ≮ j → div i j ≡ succ (div (i ∸ j) j)
------------------------------------------------------------------
-- N (div i j)
div-x≮y-N : ∀ {i j} →
(divSpec (i ∸ j) j (div (i ∸ j) j)) →
i ≮ j →
N (div i j)
div-x≮y-N ih i≮j = subst N (sym (div-x≮y i≮j)) (nsucc (∧-proj₁ ih))