------------------------------------------------------------------------------ -- The group commutator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.Commutator where open import GroupTheory.Base ------------------------------------------------------------------------------ -- The group commutator -- -- There are two definitions for the group commutator: -- -- [a,b] = aba⁻¹b⁻¹ (Mac Lane and Garret 1999, p. 418), or -- -- [a,b] = a⁻¹b⁻¹ab (Kurosh 1960, p. 99). -- -- We use Kurosh's definition, because this is the definition used by -- the TPTP 6.2.0 problem GRP/GRP024-5.p. Actually the problem uses -- the definition -- -- [a,b] = a⁻¹(b⁻¹(ab)). [_,_] : G → G → G [ a , b ] = a ⁻¹ · b ⁻¹ · a · b {-# ATP definition [_,_] #-} commutatorAssoc : G → G → G → Set commutatorAssoc a b c = [ [ a , b ] , c ] ≡ [ a , [ b , c ] ] {-# ATP definition commutatorAssoc #-} ------------------------------------------------------------------------------ -- References -- -- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea -- Publishing. -- -- Kurosh, A. G. (1960). The Theory of Groups. 2nd -- ed. Vol. 1. Translated and edited by K. A. Hirsch. Chelsea -- Publising Company.