------------------------------------------------------------------------------
-- Group theory base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GroupTheory.Base where
infix 8 _⁻¹
infixl 7 _·_
------------------------------------------------------------------------------
-- First-order logic with equality.
open import Common.FOL.FOL-Eq public renaming ( D to G )
-- Group theory axioms
postulate
ε : G -- The identity element.
_·_ : G → G → G -- The binary operation.
_⁻¹ : G → G -- The inverse function.
-- We choose a non-redundant set of axioms. See for example (Mac
-- Lane and Garret 1999, exercises 5-7, p. 50-51, or Hodges 1993,
-- p. 37).
assoc : ∀ a b c → a · b · c ≡ a · (b · c)
leftIdentity : ∀ a → ε · a ≡ a
leftInverse : ∀ a → a ⁻¹ · a ≡ ε
{-# ATP axioms assoc leftIdentity leftInverse #-}
------------------------------------------------------------------------------
-- References
--
-- Hodges, W. (1993). Model Theory. Vol. 42. Encyclopedia of
-- Mathematics and its Applications. Cambridge University Press.
--
-- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea
-- Publishing.