------------------------------------------------------------------------------ -- Group theory base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.Base where infix 8 _⁻¹ infixl 7 _·_ ------------------------------------------------------------------------------ -- First-order logic with equality. open import Common.FOL.FOL-Eq public renaming ( D to G ) -- Group theory axioms postulate ε : G -- The identity element. _·_ : G → G → G -- The binary operation. _⁻¹ : G → G -- The inverse function. -- We choose a non-redundant set of axioms. See for example (Mac -- Lane and Garret 1999, exercises 5-7, p. 50-51, or Hodges 1993, -- p. 37). assoc : ∀ a b c → a · b · c ≡ a · (b · c) leftIdentity : ∀ a → ε · a ≡ a leftInverse : ∀ a → a ⁻¹ · a ≡ ε {-# ATP axioms assoc leftIdentity leftInverse #-} ------------------------------------------------------------------------------ -- References -- -- Hodges, W. (1993). Model Theory. Vol. 42. Encyclopedia of -- Mathematics and its Applications. Cambridge University Press. -- -- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea -- Publishing.