------------------------------------------------------------------------------
-- Properties related with the group commutator
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GroupTheory.Commutator.PropertiesATP where
open import GroupTheory.Base
open import GroupTheory.Commutator
------------------------------------------------------------------------------
-- From: A. G. Kurosh. The Theory of Groups, vol. 1. Chelsea Publising
-- Company, 2nd edition, 1960. p. 99.
postulate commutatorInverse : ∀ a b → [ a , b ] · [ b , a ] ≡ ε
{-# ATP prove commutatorInverse #-}
-- If the commutator is associative, then commutator of any two
-- elements lies in the center of the group, i.e. a [b,c] = [b,c] a.
-- From: TPTP 6.2.0 problem GRP/GRP024-5.p.
postulate commutatorAssocCenter : (∀ a b c → commutatorAssoc a b c) →
(∀ a b c → a · [ b , c ] ≡ [ b , c ] · a)
{-# ATP prove commutatorAssocCenter #-}