{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Tree.TotalityATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.Mirror.Forest.TotalityATP
open import FOTC.Program.Mirror.Mirror
open import FOTC.Program.Mirror.Type
mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t)
mirror-Tree = Tree-mutual-ind {A} {B} hA B[] hB
where
A : D → Set
A t = Tree (mirror · t)
{-# ATP definition A #-}
B : D → Set
B ts = Forest (map mirror ts)
{-# ATP definition B #-}
postulate
hA : ∀ d {ts} → Forest ts → B ts → A (node d ts)
B[] : B []
hB : ∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)
{-# ATP prove hA reverse-Forest #-}
{-# ATP prove B[] #-}
{-# ATP prove hB #-}