------------------------------------------------------------------------------
-- The gcd is a common divisor
------------------------------------------------------------------------------

{-# OPTIONS --exact-split              #-}
{-# OPTIONS --no-sized-types           #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K                #-}

module FOTC.Program.GCD.Partial.CommonDivisorI where

open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Divisibility.NotBy0
open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesI
open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Program.GCD.Partial.ConversionRulesI
open import FOTC.Program.GCD.Partial.Definitions
open import FOTC.Program.GCD.Partial.GCD
open import FOTC.Program.GCD.Partial.TotalityI

------------------------------------------------------------------------------
-- Some cases of the gcd-∣₁.

-- We don't prove that
--
-- gcd-∣₁ : ... → (gcd m n) ∣ m

-- because this proof should be defined mutually recursive with the
-- proof
--
-- gcd-∣₂ : ... → (gcd m n) ∣ n.
--
-- Therefore, instead of proving
--
-- gcdCD : ... → CD m n (gcd m n)
--
-- using these proofs (i.e. the conjunction of them), we proved it
-- using well-founded induction.

-- gcd 0 (succ n) ∣ 0.
gcd-0S-∣₁ :  {n}  N n  gcd zero (succ₁ n)  zero
gcd-0S-∣₁ {n} Nn = subst  x  x  zero)
                         (sym (gcd-0S n))
                         (S∣0 n)

-- gcd (succ₁ m) 0 ∣ succ₁ m.
gcd-S0-∣₁ :  {m}  N m  gcd (succ₁ m) zero  succ₁ m
gcd-S0-∣₁ {m} Nm = subst  x  x  succ₁ m)
                         (sym (gcd-S0 m))
                         (∣-refl-S Nm)

-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m, when succ₁ m ≯ succ₁ n.
gcd-S≯S-∣₁ :
   {m n}  N m  N n 
  (gcd (succ₁ m) (succ₁ n  succ₁ m)  succ₁ m) 
  succ₁ m  succ₁ n 
  gcd (succ₁ m) (succ₁ n)  succ₁ m
gcd-S≯S-∣₁ {m} {n} Nm Nn ih Sm≯Sn =
  subst  x  x  succ₁ m)
        (sym (gcd-S≯S m n Sm≯Sn))
        ih

-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m when succ₁ m > succ₁ n.
-- We use gcd-∣₂.
-- We apply the theorem that if m∣n and m∣o then m∣(n+o).
gcd-S>S-∣₁ :
   {m n}  N m  N n 
  (gcd (succ₁ m  succ₁ n) (succ₁ n)  (succ₁ m  succ₁ n)) 
  (gcd (succ₁ m  succ₁ n) (succ₁ n)  succ₁ n) 
  succ₁ m > succ₁ n 
  gcd (succ₁ m) (succ₁ n)  succ₁ m

{- Proof:
1. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn)        IH
2. gcd (Sm ∸ Sn) Sn | Sn               gcd-∣₂
3. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) + Sn   m∣n→m∣o→m∣n+o 1,2
4. Sm > Sn                             Hip
5. gcd (Sm ∸ Sn) Sn | Sm               arith-gcd-m>n₂ 3,4
6. gcd Sm Sn = gcd (Sm ∸ Sn) Sn        gcd eq. 4
7. gcd Sm Sn | Sm                      subst 5,6
-}

gcd-S>S-∣₁ {m} {n} Nm Nn ih gcd-∣₂ Sm>Sn =
  -- The first substitution is based on
  --
  -- gcd (succ₁ m) (succ₁ n) = gcd (succ₁ m ∸ succ₁ n) (succ₁ n).
  subst  x  x  succ₁ m)
        (sym (gcd-S>S m n Sm>Sn))
        -- The second substitution is based on m = (m ∸ n) + n.
        (subst  y  gcd (succ₁ m  succ₁ n) (succ₁ n)  y)
               (x>y→x∸y+y≡x (nsucc Nm) (nsucc Nn) Sm>Sn)
               (x∣y→x∣z→x∣y+z
                 {gcd (succ₁ m  succ₁ n) (succ₁ n)}
                 {succ₁ m  succ₁ n}
                 {succ₁ n}
                 (gcd-N Sm-Sn-N (nsucc Nn)  p  ⊥-elim (S≢0 (∧-proj₂ p))))
                 Sm-Sn-N
                 (nsucc Nn)
                 ih
                 gcd-∣₂
               )
       )
  where
  Sm-Sn-N : N (succ₁ m  succ₁ n)
  Sm-Sn-N = ∸-N (nsucc Nm) (nsucc Nn)

------------------------------------------------------------------------------
-- Some case of the gcd-∣₂
-- We don't prove that gcd-∣₂ : ... → gcd m n ∣ n. The reason is
-- the same to don't prove gcd-∣₁ : ... → gcd m n ∣ m.

-- gcd 0 (succ₁ n) ∣₂ succ₁ n.
gcd-0S-∣₂ :  {n}  N n  gcd zero (succ₁ n)  succ₁ n
gcd-0S-∣₂ {n} Nn = subst  x  x  succ₁ n)
                         (sym (gcd-0S n))
                         (∣-refl-S Nn)

-- gcd (succ₁ m) 0 ∣ 0.
gcd-S0-∣₂ :  {m}  N m  gcd (succ₁ m) zero  zero
gcd-S0-∣₂  {m} Nm = subst  x  x  zero)
                          (sym (gcd-S0 m))
                          (S∣0 m)

-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m > succ₁ n.
gcd-S>S-∣₂ :
   {m n}  N m  N n 
  (gcd (succ₁ m  succ₁ n) (succ₁ n)  succ₁ n) 
  succ₁ m > succ₁ n 
  gcd (succ₁ m) (succ₁ n)  succ₁ n

gcd-S>S-∣₂ {m} {n} Nm Nn ih Sm>Sn =
  subst  x  x  succ₁ n)
        (sym (gcd-S>S m n Sm>Sn))
        ih

-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m ≯ succ₁ n.
-- We use gcd-∣₁.
-- We apply the theorem that if m∣n and m∣o then m∣(n+o).
gcd-S≯S-∣₂ :
   {m n}  N m  N n 
  (gcd (succ₁ m) (succ₁ n  succ₁ m)  (succ₁ n  succ₁ m)) 
  (gcd (succ₁ m) (succ₁ n  succ₁ m)  succ₁ m) 
  succ₁ m  succ₁ n 
  gcd (succ₁ m) (succ₁ n)  succ₁ n

{- Proof:
1. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm)        IH
2  gcd Sm (Sn ∸ Sm) | Sm               gcd-∣₁
3. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) + Sm   m∣n→m∣o→m∣n+o 1,2
4. Sm ≯ Sn                             Hip
5. gcd (Sm ∸ Sn) Sn | Sm               arith-gcd-m≤n₂ 3,4
6. gcd Sm Sn = gcd Sm (Sn ∸ Sm)        gcd eq. 4
7. gcd Sm Sn | Sn                      subst 5,6
-}

gcd-S≯S-∣₂ {m} {n} Nm Nn ih gcd-∣₁ Sm≯Sn =
  -- The first substitution is based on gcd m n = gcd m (n ∸ m).
  subst  x  x  succ₁ n)
        (sym (gcd-S≯S m n Sm≯Sn))
         -- The second substitution is based on n = (n ∸ m) + m.
        (subst  y  gcd (succ₁ m) (succ₁ n  succ₁ m)  y)
               (x≤y→y∸x+x≡y (nsucc Nm) (nsucc Nn) (x≯y→x≤y (nsucc Nm) (nsucc Nn) Sm≯Sn))
               (x∣y→x∣z→x∣y+z
                 {gcd (succ₁ m) (succ₁ n  succ₁ m)}
                 {succ₁ n  succ₁ m}
                 {succ₁ m}
                 (gcd-N (nsucc Nm) Sn-Sm-N  p  ⊥-elim (S≢0 (∧-proj₁ p))))
                 Sn-Sm-N
                 (nsucc Nm)
                 ih
                 gcd-∣₁
               )
        )

  where
  Sn-Sm-N : N (succ₁ n  succ₁ m)
  Sn-Sm-N = ∸-N (nsucc Nn) (nsucc Nm)

------------------------------------------------------------------------------
-- The gcd is CD.
-- We will prove that gcdCD : ... → CD m n (gcd m n).

-- The gcd 0 (succ₁ n) is CD.
gcd-0S-CD :  {n}  N n  CD zero (succ₁ n) (gcd zero (succ₁ n))
gcd-0S-CD Nn = (gcd-0S-∣₁ Nn , gcd-0S-∣₂ Nn)

-- The gcd (succ₁ m) 0 is CD.
gcd-S0-CD :  {m}  N m  CD (succ₁ m) zero (gcd (succ₁ m) zero)
gcd-S0-CD Nm = (gcd-S0-∣₁ Nm , gcd-S0-∣₂ Nm)

-- The gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is CD.
gcd-S>S-CD :
   {m n}  N m  N n 
  (CD (succ₁ m  succ₁ n) (succ₁ n) (gcd (succ₁ m  succ₁ n) (succ₁ n))) 
  succ₁ m > succ₁ n 
  CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S>S-CD {m} {n} Nm Nn acc Sm>Sn =
   (gcd-S>S-∣₁ Nm Nn acc-∣₁ acc-∣₂ Sm>Sn , gcd-S>S-∣₂ Nm Nn acc-∣₂ Sm>Sn)
  where
  acc-∣₁ : gcd (succ₁ m  succ₁ n) (succ₁ n)  (succ₁ m  succ₁ n)
  acc-∣₁ = ∧-proj₁ acc

  acc-∣₂ : gcd (succ₁ m  succ₁ n) (succ₁ n)  succ₁ n
  acc-∣₂ = ∧-proj₂ acc

-- The gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is CD.
gcd-S≯S-CD :
   {m n}  N m  N n 
  (CD (succ₁ m) (succ₁ n  succ₁ m) (gcd (succ₁ m) (succ₁ n  succ₁ m))) 
  succ₁ m  succ₁ n 
  CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S≯S-CD {m} {n} Nm Nn acc Sm≯Sn =
  (gcd-S≯S-∣₁ Nm Nn acc-∣₁ Sm≯Sn , gcd-S≯S-∣₂ Nm Nn acc-∣₂ acc-∣₁ Sm≯Sn)
  where
  acc-∣₁ : gcd (succ₁ m) (succ₁ n  succ₁ m)  succ₁ m
  acc-∣₁ = ∧-proj₁ acc

  acc-∣₂ : gcd (succ₁ m) (succ₁ n  succ₁ m)  (succ₁ n  succ₁ m)
  acc-∣₂ = ∧-proj₂ acc

-- The gcd m n when m > n is CD.
gcd-x>y-CD :
   {m n}  N m  N n 
  (∀ {o p}  N o  N p  Lexi o p m n  x≢0≢y o p  CD o p (gcd o p)) 
  m > n 
  x≢0≢y m n 
  CD m n (gcd m n)
gcd-x>y-CD nzero          Nn             _  0>n   _ = ⊥-elim (0>x→⊥ Nn 0>n)
gcd-x>y-CD (nsucc Nm)     nzero          _  _     _ = gcd-S0-CD Nm
gcd-x>y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn _ =
  gcd-S>S-CD Nm Nn ih Sm>Sn
  where
  -- Inductive hypothesis.
  ih : CD (succ₁ m  succ₁ n) (succ₁ n) (gcd (succ₁ m  succ₁ n) (succ₁ n))
  ih  = ah {succ₁ m  succ₁ n}
           {succ₁ n}
           (∸-N (nsucc Nm) (nsucc Nn))
           (nsucc Nn)
           ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn)
            p  ⊥-elim (S≢0 (∧-proj₂ p)))

-- The gcd m n when m ≯ n is CD.
gcd-x≯y-CD :
   {m n}  N m  N n 
  (∀ {o p}  N o  N p  Lexi o p m n  x≢0≢y o p  CD o p (gcd o p)) 
  m  n 
  x≢0≢y m n 
  CD m n (gcd m n)
gcd-x≯y-CD nzero          nzero          _  _     h = ⊥-elim (h (refl , refl))
gcd-x≯y-CD nzero          (nsucc Nn)     _  _     _ = gcd-0S-CD Nn
gcd-x≯y-CD (nsucc _)      nzero          _  Sm≯0  _ = ⊥-elim (S≯0→⊥ Sm≯0)
gcd-x≯y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn _ = gcd-S≯S-CD Nm Nn ih Sm≯Sn
  where
  -- Inductive hypothesis.
  ih : CD (succ₁ m) (succ₁ n  succ₁ m)  (gcd (succ₁ m) (succ₁ n  succ₁ m))
  ih = ah {succ₁ m}
          {succ₁ n  succ₁ m}
          (nsucc Nm)
          (∸-N (nsucc Nn) (nsucc Nm))
          ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn)
           p  ⊥-elim (S≢0 (∧-proj₁ p)))

-- The gcd is CD.
gcdCD :  {m n}  N m  N n  x≢0≢y m n  CD m n (gcd m n)
gcdCD = Lexi-wfind A h
  where
  A : D  D  Set
  A i j = x≢0≢y i j  CD i j (gcd i j)

  h :  {i j}  N i  N j  (∀ {k l}  N k  N l  Lexi k l i j  A k l) 
      A i j
  h Ni Nj ah = case (gcd-x>y-CD Ni Nj ah) (gcd-x≯y-CD Ni Nj ah) (x>y∨x≯y Ni Nj)