------------------------------------------------------------------------------ -- The relation of divisibility on partial natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.Divisibility.NotBy0 where open import FOTC.Base open import FOTC.Data.Nat infix 4 _∣_ ------------------------------------------------------------------------------ -- The relation of divisibility (the symbol is '\mid' not '|') -- -- (See documentation in FOTC.Data.Nat.Divisibility.By0) -- -- In our definition 0∤0, which is used to prove properties of the gcd -- as it is in GHC ≤ 7.0.4, where gcd 0 0 = undefined (see -- http://hackage.haskell.org/trac/ghc/ticket/3304). -- Note that @k@ should be a total natural number. _∣_ : D → D → Set m ∣ n = (m ≢ zero) ∧ (∃[ k ] N k ∧ n ≡ k * m) {-# ATP definition _∣_ #-}