{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.WF-Relation.LT-Cons.Induction.Acc.WF-I where
open import FOTC.Base
open import FOTC.Data.List
open import FOTC.Data.List.WF-Relation.LT-Cons
open import FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI
open import FOTC.Data.List.WF-Relation.LT-Length
open import FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I
open import FOTC.Induction.WF
open module S = FOTC.Induction.WF.Subrelation {List} {LTC} LTC→LTL
LTC-wf : WellFounded LTC
LTC-wf Lxs = well-founded LTL-wf Lxs
LTC-wfind : (A : D → Set) →
(∀ {xs} → List xs → (∀ {ys} → List ys → LTC ys xs → A ys) → A xs) →
∀ {xs} → List xs → A xs
LTC-wfind A = WellFoundedInduction LTC-wf