------------------------------------------------------------------------------
-- Properties for the equality on Conat
------------------------------------------------------------------------------

{-# OPTIONS --exact-split              #-}
{-# OPTIONS --no-sized-types           #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K                #-}

module FOTC.Data.Conat.Equality.PropertiesATP where

open import FOTC.Base
open import FOTC.Data.Conat
open import FOTC.Data.Conat.Equality.Type

------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the
-- relation _≈N_ is also a pre-fixed point of the functional ≈-F, i.e.
--
-- ≈-F _≈_ ≤ _≈_ (see FOTC.Data.Conat.Equality.Type).
≈-in :
   {m n} 
  m  zero  n  zero
     (∃[ m' ] ∃[ n' ] m  succ₁ m'  n  succ₁ n'  m'  n') 
  m  n
≈-in h = ≈-coind R h' h
  where
  R : D  D  Set
  R m n = m  zero  n  zero
             (∃[ m' ] ∃[ n' ] m  succ₁ m'  n  succ₁ n'  m'  n')
  {-# ATP definition R #-}

  postulate
    h' :  {m n}  R m n 
         m  zero  n  zero
            (∃[ m' ] ∃[ n' ] m  succ₁ m'  n  succ₁ n'  R m' n')
  {-# ATP prove h' #-}

≈-refl :  {n}  Conat n  n  n
≈-refl {n} Cn = ≈-coind R h₁ h₂
  where
  R : D  D  Set
  R a b = Conat a  Conat b  a  b
  {-# ATP definition R #-}

  postulate
    h₁ :  {a b}  R a b 
         a  zero  b  zero
            (∃[ a' ] ∃[ b' ] a  succ₁ a'  b  succ₁ b'  R a' b')
  {-# ATP prove h₁ #-}

  postulate h₂ : R n n
  {-# ATP prove h₂ #-}

  postulate ≡→≈ :  {m n}  Conat m  Conat n  m  n  m  n
  {-# ATP prove ≡→≈ ≈-refl #-}