{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.NonIntuitionistic.TheoremsATP where
open import FOL.Base hiding ( pem )
postulate pem : ∀ {A} → A ∨ ¬ A
{-# ATP prove pem #-}
postulate ¬-elim : ∀ {A} → (¬ A → ⊥) → A
{-# ATP prove ¬-elim #-}
postulate ¬¬-elim : ∀ {A} → ¬ ¬ A → A
{-# ATP prove ¬¬-elim #-}
postulate raa : ∀ {A} → (¬ A → A) → A
{-# ATP prove raa #-}
postulate ¬∃¬→∀ : {A : D → Set} → ¬ (∃[ x ] ¬ A x) → ∀ {x} → A x
{-# ATP prove ¬∃¬→∀ #-}