------------------------------------------------------------------------------
-- Inductive PA properties using the induction principle
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Inductive.PropertiesByInductionATP where
open import PA.Inductive.Base
open import PA.Inductive.PropertiesByInduction
------------------------------------------------------------------------------
+-comm : ∀ m n → m + n ≡ n + m
+-comm m n = ℕ-ind A A0 is m
where
A : ℕ → Set
A i = i + n ≡ n + i
{-# ATP definition A #-}
A0 : A zero
A0 = sym (+-rightIdentity n)
postulate is : ∀ i → A i → A (succ i)
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove is x+Sy≡S[x+y] #-}