------------------------------------------------------------------------------
-- Inductive PA properties using the induction principle
------------------------------------------------------------------------------

{-# OPTIONS --exact-split              #-}
{-# OPTIONS --no-sized-types           #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K                #-}

module PA.Inductive.PropertiesByInductionATP where

open import PA.Inductive.Base
open import PA.Inductive.PropertiesByInduction

------------------------------------------------------------------------------

+-comm :  m n  m + n  n + m
+-comm m n = ℕ-ind A A0 is m
  where
  A :   Set
  A i = i + n  n + i
  {-# ATP definition A #-}

  A0 : A zero
  A0 = sym (+-rightIdentity n)

  postulate is :  i  A i  A (succ i)
  -- TODO (21 November 2014). See Apia issue 16
  -- {-# ATP prove is x+Sy≡S[x+y] #-}