------------------------------------------------------------------------------
-- Abelian group theory properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GroupTheory.AbelianGroup.PropertiesATP where
open import GroupTheory.AbelianGroup.Base
------------------------------------------------------------------------------
postulate xyx⁻¹≡y : ∀ a b → a · b · a ⁻¹ ≡ b
{-# ATP prove xyx⁻¹≡y #-}
postulate x⁻¹y⁻¹≡[xy]⁻¹ : ∀ a b → a ⁻¹ · b ⁻¹ ≡ (a · b) ⁻¹
{-# ATP prove x⁻¹y⁻¹≡[xy]⁻¹ #-}