------------------------------------------------------------------------------ -- Abelian group theory properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.AbelianGroup.PropertiesATP where open import GroupTheory.AbelianGroup.Base ------------------------------------------------------------------------------ postulate xyx⁻¹≡y : ∀ a b → a · b · a ⁻¹ ≡ b {-# ATP prove xyx⁻¹≡y #-} postulate x⁻¹y⁻¹≡[xy]⁻¹ : ∀ a b → a ⁻¹ · b ⁻¹ ≡ (a · b) ⁻¹ {-# ATP prove x⁻¹y⁻¹≡[xy]⁻¹ #-}