{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Total.DivisibleATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Divisibility.By0
open import FOTC.Data.Nat.Divisibility.By0.PropertiesATP
open import FOTC.Data.Nat.Induction.NonAcc.LexicographicATP
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.PropertiesATP
open import FOTC.Program.GCD.Total.Definitions
open import FOTC.Program.GCD.Total.GCD
postulate gcd-00-Divisible : Divisible zero zero (gcd zero zero)
{-# ATP prove gcd-00-Divisible #-}
postulate
gcd-0S-Divisible : ∀ {n} → N n → Divisible zero (succ₁ n) (gcd zero (succ₁ n))
{-# ATP prove gcd-0S-Divisible #-}
postulate
gcd-S0-Divisible : ∀ {n} → N n → Divisible (succ₁ n) zero (gcd (succ₁ n) zero)
{-# ATP prove gcd-S0-Divisible #-}
postulate
gcd-S>S-Divisible-ah :
∀ {m n} → N m → N n →
(Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) →
succ₁ m > succ₁ n →
∀ c → N c → CD (succ₁ m) (succ₁ n) c →
(c ∣ succ₁ m ∸ succ₁ n) →
c ∣ gcd (succ₁ m) (succ₁ n)
{-# ATP prove gcd-S>S-Divisible-ah #-}
gcd-S>S-Divisible :
∀ {m n} → N m → N n →
(Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) →
succ₁ m > succ₁ n →
Divisible (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S>S-Divisible {m} {n} Nm Nn acc Sm>Sn c Nc (c∣Sm , c∣Sn) =
gcd-S>S-Divisible-ah Nm Nn acc Sm>Sn c Nc (c∣Sm , c∣Sn)
(x∣y→x∣z→x∣y∸z Nc (nsucc Nm) (nsucc Nn) c∣Sm c∣Sn)
postulate
gcd-S≯S-Divisible-ah :
∀ {m n} → N m → N n →
(Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) →
succ₁ m ≯ succ₁ n →
∀ c → N c → CD (succ₁ m) (succ₁ n) c →
(c ∣ succ₁ n ∸ succ₁ m) →
c ∣ gcd (succ₁ m) (succ₁ n)
{-# ATP prove gcd-S≯S-Divisible-ah #-}
gcd-S≯S-Divisible :
∀ {m n} → N m → N n →
(Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) →
succ₁ m ≯ succ₁ n →
Divisible (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S≯S-Divisible {m} {n} Nm Nn acc Sm≯Sn c Nc (c∣Sm , c∣Sn) =
gcd-S≯S-Divisible-ah Nm Nn acc Sm≯Sn c Nc (c∣Sm , c∣Sn)
(x∣y→x∣z→x∣y∸z Nc (nsucc Nn) (nsucc Nm) c∣Sn c∣Sm)
gcd-x>y-Divisible :
∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → Divisible o p (gcd o p)) →
m > n →
Divisible m n (gcd m n)
gcd-x>y-Divisible nzero Nn _ 0>n _ _ = ⊥-elim (0>x→⊥ Nn 0>n)
gcd-x>y-Divisible (nsucc Nm) nzero _ _ c Nc = gcd-S0-Divisible Nm c Nc
gcd-x>y-Divisible (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn c Nc =
gcd-S>S-Divisible Nm Nn ih Sm>Sn c Nc
where
ih : Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))
ih = ah {succ₁ m ∸ succ₁ n}
{succ₁ n}
(∸-N (nsucc Nm) (nsucc Nn))
(nsucc Nn)
([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn)
gcd-x≯y-Divisible :
∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → Divisible o p (gcd o p)) →
m ≯ n →
Divisible m n (gcd m n)
gcd-x≯y-Divisible nzero nzero _ _ c Nc = gcd-00-Divisible c Nc
gcd-x≯y-Divisible nzero (nsucc Nn) _ _ c Nc = gcd-0S-Divisible Nn c Nc
gcd-x≯y-Divisible (nsucc _) nzero _ Sm≯0 _ _ = ⊥-elim (S≯0→⊥ Sm≯0)
gcd-x≯y-Divisible (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn c Nc =
gcd-S≯S-Divisible Nm Nn ih Sm≯Sn c Nc
where
ih : Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))
ih = ah {succ₁ m}
{succ₁ n ∸ succ₁ m}
(nsucc Nm)
(∸-N (nsucc Nn) (nsucc Nm))
([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn)
gcdDivisible : ∀ {m n} → N m → N n → Divisible m n (gcd m n)
gcdDivisible = Lexi-wfind A h
where
A : D → D → Set
A i j = Divisible i j (gcd i j)
h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) →
A i j
h Ni Nj ah = case (gcd-x>y-Divisible Ni Nj ah)
(gcd-x≯y-Divisible Ni Nj ah)
(x>y∨x≯y Ni Nj)