{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Induction.NonAcc.WF-ATP where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.Type
module WFInd where
<-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) →
∀ {n} → N n → A n
<-wfind A h Nn = h Nn (helper Nn)
where
helper : ∀ {n m} → N n → N m → m < n → A m
helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0)
helper (nsucc _) nzero 0<Sn = h nzero (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn = h (nsucc Nm)
(λ {m'} Nm' m'<Sm →
let Sm'≤Sm : succ₁ m' ≤ succ₁ m
Sm'≤Sm = x<y→Sx≤y Nm' (nsucc Nm) m'<Sm
Sm≤n : succ₁ m ≤ n
Sm≤n = Sx≤Sy→x≤y (x<y→Sx≤y (nsucc Nm) (nsucc Nn) Sm<Sn)
Sm'≤n : succ₁ m' ≤ n
Sm'≤n = ≤-trans (nsucc Nm') (nsucc Nm) Nn Sm'≤Sm Sm≤n
m'<n : m' < n
m'<n = Sx≤y→x<y Nm' Nn Sm'≤n
in helper Nn Nm' m'<n
)
module WFInd' where
<-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) →
∀ {n} → N n → A n
<-wfind A h Nn = h Nn (helper Nn)
where
helper : ∀ {n m} → N n → N m → m < n → A m
helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0)
helper (nsucc _) nzero 0<Sn = h nzero (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn = h (nsucc Nm)
(λ {m'} Nm' m'<Sm →
let m<n : m < n
m<n = Sx<Sy→x<y Sm<Sn
m'<n : m' < n
m'<n = case (λ m'<m → <-trans Nm' Nm Nn m'<m m<n)
(λ m'≡m → x≡y→y<z→x<z m'≡m m<n)
(x<Sy→x<y∨x≡y Nm' Nm m'<Sm)
in helper Nn Nm' m'<n
)