------------------------------------------------------------------------------
-- Properties of the divisibility relation
------------------------------------------------------------------------------

{-# OPTIONS --exact-split              #-}
{-# OPTIONS --no-sized-types           #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K                #-}

module FOTC.Data.Nat.Divisibility.By0.PropertiesI where

open import Common.FOL.Relation.Binary.EqReasoning

open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Data.Nat.Divisibility.By0
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.TotalityI

------------------------------------------------------------------------------
-- Any positive number divides 0.
S∣0 :  n  succ₁ n  zero
S∣0 n = zero , nzero , sym (*-leftZero (succ₁ n))

-- 0 divides 0.
0∣0 : zero  zero
0∣0 = zero , nzero , sym (*-leftZero zero)

-- The divisibility relation is reflexive.
∣-refl :  {n}  N n  n  n
∣-refl {n} Nn = 1' , 1-N , sym (*-leftIdentity Nn)

-- If x divides y and z then x divides y ∸ z.
--
x∣y→x∣z→x∣y∸z-helper :  {m n o k k'}  N m  N k  N k' 
                       n  k * m 
                       o  k' * m 
                       n  o  (k  k') * m
x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' refl refl = sym (*∸-leftDistributive Nk Nk' Nm)

x∣y→x∣z→x∣y∸z :  {m n o}  N m  N n  N o  m  n  m  o  m  n  o
x∣y→x∣z→x∣y∸z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) =
  k  k' , ∸-N Nk Nk' , x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' h₁ h₂

-- If x divides y and z then x divides y + z.
x∣y→x∣z→x∣y+z-helper :  {m n o k k'}  N m  N k  N k' 
                       n  k * m 
                       o  k' * m 
                       n + o  (k + k') * m
x∣y→x∣z→x∣y+z-helper Nm Nk Nk' refl refl = sym (*+-leftDistributive Nk Nk' Nm)

x∣y→x∣z→x∣y+z :  {m n o}  N m  N n  N o  m  n  m  o  m  n + o
x∣y→x∣z→x∣y+z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) =
  k + k' , +-N Nk Nk' , x∣y→x∣z→x∣y+z-helper Nm Nk Nk' h₁ h₂

-- If x divides y and y is positive, then x ≤ y.
x∣S→x≤S :  {m n}  N m  N n  m  (succ₁ n)  m  succ₁ n
x∣S→x≤S {m} Nm Nn (.zero , nzero , Sn≡0*m) =
  ⊥-elim (0≢S (trans (sym (*-leftZero m)) (sym Sn≡0*m)))
x∣S→x≤S {m} Nm Nn (.(succ₁ k) , nsucc {k} Nk , Sn≡Sk*m) =
  subst  t₁  m  t₁)
        (sym Sn≡Sk*m)
        (subst  t₂  m  t₂)
               (sym (*-Sx k m))
               (x≤x+y Nm (*-N Nk Nm)))

-- If 0 divides x, then x = 0.
0∣x→x≡0 :  {m}  N m  zero  m  m  zero
0∣x→x≡0 nzero          _                 = refl
0∣x→x≡0 (nsucc {m} Nm) (k , Nk , Sm≡k*0) =
  ⊥-elim (0≢S (trans (sym (*-leftZero k))
                     (trans (*-comm nzero Nk) (sym Sm≡k*0))))