------------------------------------------------------------------------------ -- Distributive laws on a binary operation (Stanovský example) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.README where ------------------------------------------------------------------------------ -- Description -- Let _·_ be a left-associative binary operation which satifies the -- left and right distributive axioms: -- -- ∀ x y z → x ∙ (y ∙ z) ≡ (x ∙ y) ∙ (x ∙ z) -- ∀ x y z → (x ∙ y) ∙ z ≡ (x ∙ z) ∙ (y ∙ z). -- We prove some properties of Stanovský (2008): Task B, Lemma 3, -- Lemma 4, Lemma 5 (Task A) and Lemma 6. ------------------------------------------------------------------------------ -- The axioms open import DistributiveLaws.Base -- The interactive and combined proofs open import DistributiveLaws.Lemma3-ATP open import DistributiveLaws.Lemma4-ATP open import DistributiveLaws.Lemma5-ATP open import DistributiveLaws.Lemma6-ATP open import DistributiveLaws.TaskB-AllStepsATP open import DistributiveLaws.TaskB-HalvedStepsATP open import DistributiveLaws.TaskB-I open import DistributiveLaws.TaskB-TopDownATP -- Unproven theorem by the ATPs open import DistributiveLaws.TaskB.UnprovedATP ------------------------------------------------------------------------------ -- References: -- -- Stanovský, David (2008). Distributive Groupoids are -- Symmetrical-by-Medial: An Elementary Proof. Commentations -- Mathematicae Universitatis Carolinae 49.4, pp. 541–546.