------------------------------------------------------------------------------ -- Distributive laws on a binary operation: Lemma 4 ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.Lemma4-ATP where open import DistributiveLaws.Base ------------------------------------------------------------------------------ postulate lemma-4a : ∀ x y z → ((x · x ) · y) · z ≡ (x · y) · z {-# ATP prove lemma-4a #-} postulate lemma-4b : ∀ x y z → (x · (y · (z · z))) ≡ x · (y · z) {-# ATP prove lemma-4b #-}