------------------------------------------------------------------------------ -- LTC-PCF terms properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Base.Properties where open import LTC-PCF.Base ------------------------------------------------------------------------------ -- Congruence properties ·-leftCong : ∀ {m n o} → m ≡ n → m · o ≡ n · o ·-leftCong refl = refl ·-rightCong : ∀ {m n o} → n ≡ o → m · n ≡ m · o ·-rightCong refl = refl succCong : ∀ {m n} → m ≡ n → succ₁ m ≡ succ₁ n succCong refl = refl predCong : ∀ {m n} → m ≡ n → pred₁ m ≡ pred₁ n predCong refl = refl ------------------------------------------------------------------------------ S≢0 : ∀ {n} → succ₁ n ≢ zero S≢0 S≡0 = 0≢S (sym S≡0) -- We added Common.Relation.Binary.PropositionalEquality.cong, so this -- theorem is not necessary. -- x≡y→Sx≡Sy : ∀ {m n} → m ≡ n → succ₁ m ≡ -- succ₁ n x≡y→Sx≡Sy refl = refl