------------------------------------------------------------------------------
-- The program to sort a list is correct
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module proves the correctness of a program which sorts a list
-- by converting it into an ordered tree and then back to a list
-- (Burstall, 1969, p. 45).
module FOTC.Program.SortList.CorrectnessProofATP where
open import FOTC.Base
open import FOTC.Data.Nat.List.Type
open import FOTC.Program.SortList.PropertiesATP
open import FOTC.Program.SortList.Properties.Totality.TreeATP
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
-- Main theorem: The sort program generates an ordered list.
postulate sortCorrect : ∀ {is} → ListN is → OrdList (sort is)
{-# ATP prove sortCorrect flatten-OrdList makeTree-Tree makeTree-OrdTree #-}
------------------------------------------------------------------------------
-- References
--
-- Burstall, R. M. (1969). Proving properties of programs by
-- structural induction. The Computer Journal 12.1, pp. 41–48.