------------------------------------------------------------------------------ -- The program to sort a list is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of a program which sorts a list -- by converting it into an ordered tree and then back to a list -- (Burstall, 1969, p. 45). module FOTC.Program.SortList.CorrectnessProofATP where open import FOTC.Base open import FOTC.Data.Nat.List.Type open import FOTC.Program.SortList.PropertiesATP open import FOTC.Program.SortList.Properties.Totality.TreeATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- Main theorem: The sort program generates an ordered list. postulate sortCorrect : ∀ {is} → ListN is → OrdList (sort is) {-# ATP prove sortCorrect flatten-OrdList makeTree-Tree makeTree-OrdTree #-} ------------------------------------------------------------------------------ -- References -- -- Burstall, R. M. (1969). Proving properties of programs by -- structural induction. The Computer Journal 12.1, pp. 41–48.