{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Nest.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat.Type
open import FOTC.Program.Nest.Nest
nest-x≡0 : ∀ {n} → N n → nest n ≡ zero
nest-x≡0 nzero = prf
where postulate prf : nest zero ≡ zero
{-# ATP prove prf #-}
nest-x≡0 (nsucc {n} Nn) = prf (nest-x≡0 Nn)
where postulate prf : nest n ≡ zero → nest (succ₁ n) ≡ zero
{-# ATP prove prf #-}
postulate nest-N : ∀ {n} → N n → N (nest n)
{-# ATP prove nest-N nest-x≡0 #-}