{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.List.PropertiesATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Nat.List
open import FOTC.Data.List
++-ListN : ∀ {ms ns} → ListN ms → ListN ns → ListN (ms ++ ns)
++-ListN {ns = ns} lnnil nsL = prf
where postulate prf : ListN ([] ++ ns)
{-# ATP prove prf #-}
++-ListN {ns = ns} (lncons {m} {ms} Nd LNms) LNns = prf (++-ListN LNms LNns)
where postulate prf : ListN (ms ++ ns) → ListN ((m ∷ ms) ++ ns)
{-# ATP prove prf #-}