------------------------------------------------------------------------
-- Unary relations
------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Adapted from the Agda standard library.
module Common.Relation.Unary where
infix 4 _∈_ _⊆_
------------------------------------------------------------------------
-- Unary relations
Pred : Set → Set₁
Pred A = A → Set
_∈_ : ∀ {A} → A → Pred A → Set
x ∈ P = P x
-- P ⊆ Q means that P is a subset of Q.
_⊆_ : ∀ {A} → Pred A → Pred A → Set
P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q