------------------------------------------------------------------------ -- Unary relations ------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Adapted from the Agda standard library. module Common.Relation.Unary where infix 4 _∈_ _⊆_ ------------------------------------------------------------------------ -- Unary relations Pred : Set → Set₁ Pred A = A → Set _∈_ : ∀ {A} → A → Pred A → Set x ∈ P = P x -- P ⊆ Q means that P is a subset of Q. _⊆_ : ∀ {A} → Pred A → Pred A → Set P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q