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Abstract
In a previous research, we proposed a first-order theory for reason-
ing about functional programs by combining interactive proofs per-
formed in the Agda proof assistant and automatic proofs performed
by off-the-shelf first-order automatic theorem provers (ATPs). Our
approach can be used with other first-order theories too. We have
used it with other first-order theories such as Group Theory and
Peano Arithmetic, and we had encouraging results. In our approach,
we use the ATPs as oracles via a Haskell program called Apia, that
is, we trust the ATPs when they tell us that a proof exists. In
consequence, the consistency of our approach relies on the correct
implementation of both the Apia program and the ATPs. We pro-
pose strengthen the consistency of our approach by reconstructing
in Agda the first-order proofs automatically produced.
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Context of Our Research Problem

Verification of programs

Verification of operational systems
Example: Gerwin Klein et al. [2010]. seL4: Formal Verification
of an Operating-system Kernel. Communications of ACM 53.6,
pp. 107–115.
Verification of compilers
Example: CompCert Project (2008 - current)
Xavier Leroy [2009]. Formal Verification of a Realistic Compiler.
Communications of the ACM 52.7, pp. 107–115.

Programming logic (a logic in which programs and specifications
can be expressed and in which it can be proved or disproved that
a certain program meets a certain specification).
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Formalisation of proofs / verification of programs

Proof assistant (an interactive computer system which helps
with the development of formal proofs).
Dependent types (a dependent type is a type that depend on a
value).
Π-types
Π𝑥 ∶ 𝐴.𝐵(𝑥) is the type of terms 𝑓 such that, for every 𝑎 ∶ 𝐴
then 𝑓 𝑎 ∶ 𝐵(𝑎).
Σ-types
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Interaction with automatic theorem provers (ATPs)

ATPs for first-order logic
The TPTP world (http://www.cs.miami.edu/~tptp/).
Satisfiability modulo theories solvers (SMT Solvers)
Apia
A Haskell program which:
(i) provides a translation of our Agda representation of first-order
formulae into TPTP languages (FOF, TFF0) and
(ii) calls the ATPs.
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Research Problem
Problem
In our approach to the verification of functional programs [Bove,
Dybjer, and Sicard-Ramírez 2009, 2012; Sicard-Ramírez 2014], we
use the ATPs as oracles via the Apia program, that is, we trust the
ATPs when they tell us that a proof exists.
The consistency of our approach relies on the correct implementation
of both the Apia program and the ATPs.
We propose strengthen the consistency of our approach by recon-
structing in Agda the first-order proofs automatically produced.

Goal
Reconstruct first-order proofs produced by one ATP using Agda as
an logical framework.
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State of Art
We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.

Sledgehammer provides a full integration of automatic theorem provers
including ATPs for first-order logic and SMT solvers [Blanchette,
Böhme, and Paulson 2013] with Isabelle/HOL.
Foster and Struth [2011] integrate Waldmeister into Agda. This
integration uses a proof reconstruction step. The approach is re-
stricted to pure equational logic—FOL with equality but no other
predicate symbols and no functions symbols [Appel 1959].
SMTCoq [Armand et al. 2011] is a tool for the Coq proof assistant
which provides a certified checker for proof witnesses coming from
the SMT solver veriT and adds a new tactic named verit, that calls
veriT on any Coq goal.
Given a fixed but arbitrary first-order signature, Bezem, Hendriks,
and de Nivelle [2002] transform a proof produced by the first-order
ATP Bliksem in a Coq proof term.
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