Propositions as Types in Agda

Andrés Sicard-Ramirez

Universidad EAFIT

Encuentro Algebra y Légica
Universidad Tecnolégica de Pereira
9 December 2015

Propositions as Types: Introduction

- - deep correspondence
A given logic

A given program-
ming language

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)
© Propositions as types

‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)
© Propositions as types

‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.

@ Proofs as programs

‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)
© Propositions as types

‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.

@ Proofs as programs

‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.

© Simplification of proofs as evaluation of programs

‘For each way to simplify a proof there is a corresponding way
to evaluate a program—and vice versa.

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Agda: Introduction

Interactive proof assistants

‘Proof assistants are computer systems that allow a user to do math-
ematics on a computer, but not so much the computing (numerical
or symbolical) aspect of mathematics but the aspects of proving
and defining. So a user can set up a mathematical theory, define
properties and do logical reasoning with them. (Geuvers 2009, p. 3.)

Examples
Agda, Coq and Isabelle among others.

H. Geuvers [2009]. Proof Assistants: History, |deas and Future. Sadhana.

Agda:

Introduction

Agda

Chalmers University of
Technology and University
of Gothenburg (Sweden)

Based on Martin-Lof type
theory

Direct manipulation of
proofs-objects

Back-ends to Haskell (GHC
and UHCQ)

Written in Haskell

Current version:
Agda 2.4.2.4

Agda:

Introduction

Agda

Chalmers University of
Technology and University
of Gothenburg (Sweden)

Based on Martin-Lof type
theory

Direct manipulation of
proofs-objects

Back-ends to Haskell (GHC
and UHCQ)

Written in Haskell

Current version:
Agda 2.4.2.4

[sabelle

University of Cambridge
(England) and Technical
University of Munich
(German)

Based on higher-order logic
Tactic-based

Extraction of programs to
Haskell, OCaml, Scala and
SML

Written in SML

Integration with ATPs and
SMT solvers

Current version:
Isabelle2015

Propositions as Types: First Presentation

Intuitionistic
logic

Gentzen's
natural
deduction

Church’s
A-calculus

Y

Church's
simply typed
A-calculus

/

Proposition as types
for intuitionist logic

Constructive Interpretation of the Logical Constants

a proof of
the pro-
position

consist of (Brower-
Heyting-Kolmogorov
interpretation)

has the form

ANB

AV B

ADB

a proof of A and a
proof of B

a proof of A or a proof
of B

has not proof

a method which takes

any proof of A into a
proof of B

(a,b), where a is a proof of A
and b is a proof of B

inl(a), where a is a proof of A,
or inr(b), where b is a proof
of B

Axz.b(z), where b(a) is a proof
of B provided a is a proof of A

Gentzen's Natural Deduction

Inference rules: Introduction and elimination

A B A& B A& B
—&-I &-Ey &-Ey
A& B
[A]*
: ADB A
O-E
B
o-I" 2
ADB

(Figure 1 of Wadler (2015))

Gentzen's Natural Deduction

Example (Proof example)

[B & A)? [B & A)?
— & — &E
A B
&-1
A& B
o-T?

(B& A) D (A& B)

(Figure 1 of Wadler (2015))

Church’s Simply Typed A-Calculus

Type assignment rules: Introduction and elimination

M:A N:B L:AxB L:AxB
x-I — x-F — x-E
(M,N):AxB m LA myL:B
[x: Al
. L:A—B M: A
; —-E
s L LM:B
MN:A—B

(Figure 5 of Wadler (2015))

Church’s Simply Typed A-Calculus

Example (Program example)

[z: B x A [z: B x A

— x-E — x-F
Ty Z: A mZ:B

x-1

<7T2 Z,7TlZ>:A>< B

AZ . (myz,m2Z): (BXx A)— (AxB)

—-T?

(Figure 6 of Wadler (2015))

Agda demo

Propositions as Types on the Logical Constants

(conjunction

(disjunction

(falsehood

)

)
(implication)
)

(negation)

ANB=AxB

AVB=A+21B

ADB=A—B
=1
“A=A— L

(product type)
(sum type)
(function type)
(empty type)

Further Subjects

@ Propositions as types on predicate logic (which requires
dependent types on the programming language)

@ Propositions as types on other (e.g. classical, modal, linear)
logics

@ Verification of programs using dependently typed A-calculus

Further Reading

Propositions as types

e P. Wadler [2015]. Propositions as Types. Communications of
the ACM

@ M.-H. Sgrensen and P. Urzyczyn [2006]. Lectures on the
Curry-Howard Isomorphism.

Agda
@ A. Bove and P. Dybjer [2009]. Dependent Types at Work.
e U. Norell [2009]. Dependently Typed Programming in Agda.

Thanks!

