
Programming Languages meets Program
Verification: The Chalmers University’s Approach

Andrés Sicard-Ramírez

Logic and Computation Seminar
Universidad EAFIT

27 Feb 2007



Abstract

We shall give an overview of the CoVer project (Combining Verifi-
cation Methods in Software Development) at Chalmers University,
Sweden. The goal of this project is to provide an environment for
Haskell programming which provides access to tools for automatic
and interactive correctness proofs as well as to tools for testing.
Moreover, we will show a short demo of two tools developed around
CoVer project: Agda, a proof assistant using dependent type theory,
and QuickCheck, a property based random testing tool for Haskell.

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Sweden

• Area: 449.964 km2. • Pop: 9.1 million • Capital: Stockholm

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Gothenburg

• Area: 450 km2. • Pop: 487.627

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Independent Types

Definition (Independent types (abstract syntax))

𝑉 ∶∶= 𝑣 ∣ 𝑉 ′ (type variables)
𝐶 ∶∶= 𝑐1 ∣ ⋯ ∣ 𝑐𝑛 (type constants)

𝕋 ∶∶= 𝑉
∣ 𝐶
∣ 𝕋 → 𝕋 (function types)
∣ 𝕋 × 𝕋 (product types)
∣ 𝕋 + 𝕋 (disjoint union types)

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Independent Types

Example (Haskell’s types)
Type variables: a,b,…
Type constants: Int,Integer,Char,etc.
Function types: e.g. Int → Int
Product types: e.g. (Int,Char)
Disjoint union types: e.g.
data Sum a b = Inl a ∣ Inr b

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



(Untyped) Lambda-Calculus

Intuitively

𝜆-calculus element Denotes
𝜆𝑥.𝑥2 + 1 (abstraction) Fn. 𝑥 ↦ 𝑥2 + 1
(𝜆𝑥.𝑥2 + 1)3 (application) Fn. 𝑥 ↦ 𝑥2 + 1 applied to 3
(𝜆𝑥.𝑥2 + 1)3 =𝛽 32 + 1 (𝛽-
reduction)

The value of fn. 𝑥 ↦ 𝑥2 + 1
applied to 3

Definition (𝜆-terms)

𝑉 ∶∶= 𝑣 ∣ 𝑉 ′ (variables)
Λ ∶∶= 𝑉 ∣ (ΛΛ) ∣ (𝜆𝑉 Λ) (𝜆-terms)

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



(Untyped) Lambda-Calculus

Definition (𝛽-conversion)

(𝜆𝑥.𝑀)𝑁 =𝛽 𝑀[𝑥 ∶= 𝑁] 𝛽-conversion

Conventions
1 𝑥, 𝑦, 𝑧, … denote variables
2 𝑀, 𝑁, 𝐿, … denote 𝜆-terms
3 𝐹𝑀1𝑀2 … 𝑀𝑛 denotes (… ((𝐹𝑀1)𝑀2) … 𝑀𝑛) (application

uses association to the left)
4 𝜆𝑥1 … 𝑥𝑛.𝑀 denotes (𝜆𝑥1(… (𝜆𝑥𝑛(𝑀)) … )) (abstraction

uses association to the right)
5 Outermost parentheses are not written

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



(Untyped) Lambda-Calculus

Examples

I ≡ 𝜆𝑥.𝑥 (identity function)
K ≡ 𝜆𝑥𝑦.𝑥 (first coordinate projection)
S ≡ 𝜆𝑥𝑦𝑧.𝑥𝑧(𝑦𝑧)

I𝑀 =𝛽 𝑀
K𝑀𝑁 =𝛽 𝑀

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Typed Lambda-Calculus

General picture

Typed 𝜆-calculus X

Set of types
of X

Type assignment
Inference rules

//

99ttttttttttttttttt
𝜆-terms

Variables (𝑥, 𝑦, … )
Application (𝑀𝑁)

Abstraction (𝜆𝑥.𝑀)

ffNNNNNNNNNNNNN

oo

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Typed Lambda-Calculus

Definition (Simple typed 𝜆-calculus (à la Curry))
Types 𝕋:
type variables: 𝛼, 𝛼′, ⋯ ∈ 𝕋
function space types: 𝜎, 𝜏 ∈ 𝕋 ⇒ (𝜎 → 𝜏) ∈ 𝕋

Inference rules:

(Axiom,Variable)𝑥 ∶ 𝜎 ⊢ 𝑥 ∶ 𝜎

Γ ⊢ 𝑀 ∶ (𝜎 → 𝜏) Γ ⊢ 𝑁 ∶ 𝜎 (→-elimination, Application)Γ ⊢ (𝑀𝑁) ∶ 𝜏

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏 (→-introduction, Abstraction)Γ ⊢ (𝜆𝑥.𝑀) ∶ (𝜎 → 𝜏)

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Typed Lambda-Calculus

Example (Proof in simple typed 𝜆-calculus)
(Var)𝑥 ∶ 𝜎, 𝑦 ∶ 𝜏 ⊢ 𝑥 ∶ 𝜎 (Abs)𝑥 ∶ 𝜎 ⊢ 𝜆𝑦.𝑥 ∶ 𝜏 → 𝜎 (Abs)⊢ 𝜆𝑥𝑦.𝑥 ∶ 𝜎 → 𝜏 → 𝜎

Example (Haskell)
k m n = m
k = \m n -> m

*GHCi> :t k
k :: a -> b -> a

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Dependent Types

Definition (Dependent types)
“A dependent type is a type that may depend on a value, typi-
cally like an array type, which depends on its length.” [Barthe and
Coquand 2002, p. 2]

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Dependent Types

Definition (Set theory: Dependent function space)
Let (𝐵𝑥)𝑥∈𝐴 be an indexed family of sets. Then

∏
𝑥∈𝐴

𝐵𝑥 ∶= { 𝑓 ∶ 𝐴 → ⋃ 𝑥∈𝐴𝐵𝑥 ∣ (∀𝑥 ∈ 𝐴)(𝑓(𝑥) ∈ 𝐵𝑥) } .

Note
If 𝐵𝑥 = 𝐵 for all 𝑥 ∈ 𝐴, then ∏𝑥∈𝐴 𝐵𝑥 = 𝐴 → 𝐵.

Definition (Type theory: Pi types)
∏𝑥∶𝐴 𝐵(𝑥) is the type of terms 𝑓 such that, for every 𝑎 ∶ 𝐴 then
𝑓 𝑎 ∶ 𝐵(𝑎).

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Dependent Types

Definition (Set theory: Sum (disjoint union) of a family of sets)
Let (𝐵𝑥)𝑥∈𝐴 be an indexed family of sets. Then

∑
𝑥∈𝐴

𝐵𝑥 ∶= { (𝑥, 𝑏) ∣ 𝑥 ∈ 𝐴 and 𝑏 ∈ 𝐵𝑥 }.

Note
If 𝐵𝑥 = 𝐵 for all 𝑥 ∈ 𝐴, then ∑𝑥∈𝐴 𝐵𝑥 = 𝐴 × 𝐵.

Definition (Type theory: Sigma types)
∑𝑥∶𝐴 𝐵(𝑥) is the type of pairs (𝑀, 𝑁) such that 𝑀 ∶ 𝐴
and 𝑁 ∶ 𝐵(𝑀).

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Constructive Interpretation of the Logical Constants

Definition
“a proposition is defined by laying down what counts as proof of the
proposition …a proposition is true if it has a proof, that is, if a proof
of it can be given.” [Martin-Löf 1984, p. 11]

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Constructive Interpretation of the Logical Constants
a proof of the
proposition

consist of (BHK-
interpretation)

has the form

𝐴 ∧ 𝐵 a proof of 𝐴 and a
proof of 𝐵

(𝑎, 𝑏), where 𝑎 is a proof of 𝐴
and 𝑏 is a proof of 𝐵

𝐴 ∨ 𝐵 a proof of 𝐴 or a
proof of 𝐵

inl(𝑎), where 𝑎 is a proof of 𝐴, or
inr(𝑏), where 𝑏 is a proof of 𝐵

⊥ has not proof
𝐴 ⊃ 𝐵 a method which

takes any proof of 𝐴
into a proof of 𝐵

𝜆𝑥.𝑏(𝑥), where 𝑏(𝑎) is a proof
of 𝐵 provided 𝑎 is a proof of 𝐴

(∀𝑥)𝐵(𝑥) a method which
takes an arbitrary
individual 𝑎 into a
proof of 𝐵(𝑎)

𝜆𝑥.𝑏(𝑥), where 𝑏(𝑎) is a proof
of 𝐵(𝑎) provided 𝑎 is a proof of 𝐴

(∃𝑥)𝐵(𝑥) an individual 𝑎 and a
proof of 𝐵(𝑎)

(𝑎, 𝑏), where 𝑎 is an individual
and 𝑏 is a proof of 𝐵(𝑎)

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Curry-Howard Isomorphism

“If we take seriously the idea that a proposition is defined by laying
down how its canonical proofs are formed and accept that a set is
defined by prescribing how its canonical elements are formed, then
it is clear that it would only lead to unnecessary duplication to keep
the notions of proposition and set…apart.” [Martin-Löf 1984, p. 13]

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Curry-Howard Isomorphism
𝐴 𝑎 ∶ 𝐴
𝐴 is a set 𝑎 is an element of the set 𝐴 𝐴 ≠ ∅
𝐴 is a proposition 𝑎 is a proof (construction)

of the proposition 𝐴
𝐴 is true

𝐴 is a problem 𝑎 is a method of solving the
problem 𝐴

𝐴 is solvable

𝐴 is a specification 𝑎 is a program than meets
the specification 𝐴

𝐴 is satisfiable

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Curry-Howard Isomorphism

Curry-Howard isomorphism (propositions-as-sets,
formulas-as-types)

𝐴 ∧ 𝐵 = 𝐴 × 𝐵 (product type)
𝐴 ∨ 𝐵 = 𝐴 + 𝐵 (sum type)
𝐴 ⊃ 𝐵 = 𝐴 → 𝐵 (function type)

⊥ = N0 (empty type)
⊤ = N1 (unit type)

¬𝐴 = 𝐴 → ⊥
(∀𝑥)𝐵(𝑥) = ∏

𝑥∶𝐴
𝐵(𝑥) (Pi type)

(∃𝑥)𝐵(𝑥) = ∑
𝑥∶𝐴

𝐵(𝑥) (Sigma type)

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Curry-Howard Isomorphism

Example (Curry-Howard isomorphism working)
𝜆 → : simple typed 𝜆-calculus
𝐼𝑃𝐶(→): Implicational fragment of intuitionistic propositional logic

(Var)𝑥 ∶ 𝜎, 𝑦 ∶ 𝜏 ⊢𝜆→ 𝑥 ∶ 𝜎 (Abs)𝑥 ∶ 𝜎 ⊢𝜆→ 𝜆𝑦.𝑥 ∶ 𝜏 → 𝜎 (Abs)⊢𝜆→ 𝜆𝑥𝑦.𝑥 ∶ 𝜎 → 𝜏 → 𝜎

(Ax)𝜎, 𝜏 ⊢𝐼𝑃𝐶(→) 𝜎
(→-intro)𝜎 ⊢𝐼𝑃𝐶(→) 𝜏 → 𝜎

(→-intro)⊢𝐼𝑃𝐶(→) 𝜎 → 𝜏 → 𝜎

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



Other Slides

Remark: The other slides shown in talk, that is to say, Prof.
Dybjer’s slides, can be found in
http://www.cs.chalmers.se/~peterd/ under the “Combining
testing and proving” link.

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach

http://www.cs.chalmers.se/~peterd/


Acknowledgements

We thank Peter Dybjer and Ana Bove (Chalmers University of
Technology), Alberto Pardo (Universidad de la República),
and Francisco Correa (Universidad EAFIT) for help us in all
issues related to our visit to Chalmers University.
We thank Universidad EAFIT and LerNET project for
financial support.

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach



References

Barthe, G. and Coquand, T. (2002). An Introduction to Dependent
Type Theory. In: Applied Semantics. Ed. by Barthe, G., Dybjer, P.,
Pinto, L., and Saraiva, J. Vol. 2395. Lecture Notes in Computer
Science, pp. 1–41. doi: 10.1007/3-540-45699-6_1.
Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis.

Andrés Sicard-Ramírez PL meets PV:The Chalmers University’s Approach

https://doi.org/10.1007/3-540-45699-6_1

