
Embedding a logical theory of constructions in Agda

Andrés Sicard-Raḿırez1

joint work with Ana Bove2 and Peter Dybjer2

1EAFIT University, Colombia

2Chalmers University of Technology, Sweden

PLPV’09
Savannah, Georgia

Introduction

Motivation - Long term goal

To use a proof assistant for verifying programs written in a standard
functional language such as Haskell.

In this talk

1 A core functional programming: Plotkin’s PCF

2 A programming logic: Aczel’s Logical Theory of Constructions (LTC)

3 A proof assistant: Agda, based on intuitionistic type theory (ITT),
development at Chalmers

⇒ Embedding a logical theory of constructions for PCF in Agda

LTC as a programming logic for PCF

LTC (P. Aczel 1974, 1980 and J. Smith 1978, 1984)
LTC as a programming logic (P. Dybjer 1985, 1986, 1990)

PCF
(untyped functional programming language)

oo // A notion of
program

LTC

55kkkkkkkkkkkkkkkkkkkk //

))SSSSSSSSSSSSSSSSSSSS
Constructive predicate logic with equality

and inductive predicates
oo // A notion of

specification

Inference rules: logical rules, conversion rules
and inductive predicates rules

oo // A notion of
satisfaction

LTC as a programming logic for PCF: programming
language

PCF-terms

t ::= x | t t | λx .t | fix x .t | 0 | succ t | pred t | iszero t

| true | false | if t then t else t | error

Example (The greatest common divisor (gcd) of two naturals numbers
using Euclid’s algorithm)

fix g .λm.λn.if (iszero n)

then if (iszero m) then error else m

else if (iszero m) then n

else if m � n then g (m − n) n

else g m (n −m)

LTC as a programming logic for PCF: inference rules

Logical rules

Inference rules for (intuitionistic) predicate logic

Equality rules

t = t (reflexivity) s = t → P s → P t (substitution)

Conversion rules for the PCF-terms

∀t t ′.if true then t else t ′ = t

∀t t ′.if false then t else t ′ = t ′

pred 0 = 0

∀t.pred (succ t) = t

iszero 0 = true

∀t.iszero (succ t) = false

∀t t ′.(λx .t) t ′ = t[x := t ′]

∀t. fix x . t = t[x := fix x . t]

LTC as a programming logic for PCF: inference rules
(cont.)

Discrimination rules for constructors

¬(true = false) ∀t. ¬(0 = succ t)

Introduction rules for B (total booleans) and N (total natural numbers)

B true N 0
B false ∀t.N t → N (succ t)

Elimination rules for B and N

P true→ P false→ ∀t.(B t → P t) (proof by case analysis)
P 0→ ∀t.(N t → P t → P (succ t))→ ∀t.(N t → P t) (proof by MI)

LTC as a programming logic for PCF: termination and
examples

Using totality predicates for expressing termination

N n: n is a total natural number, that is, a PCF program which returns a
total natural number when computed (resp. B b).

Example (The gcd always terminates)

∀m n.N m→ N n→ ¬(m = 0 ∧ n = 0)→ N(gcd m n)

Example (The correctness of the gcd)

∀m n.N m→ N n→ ¬(m = 0 ∧ n = 0)→
CD m n (gcd m n) ∧ ∀d .(CD m n d → d 6 (gcd m n))

where (CD m n d) stands for (d | m ∧ d | n) when | is the divisibility
predicate.

Agda as a logical framework for LTC

Logical framework-style encoding of LTC: mixed approach

Agda

Curry-Howard isomorphism

The identity type

Inductive families

Postulates

LTC

Constructive predicate logic //______________

Equality //____________________________

Inductive predicates //

PCF-terms
Conversion rules

Discrimination rules

00aaaaaaaaaaaaaaaaaaaaaaaaa

Encoding of LTC

PCF terms (postulates)

postulate
D : Set -- The domain of PCF-terms

λ : (D -> D) -> D -- abstraction and app.
‘ : D -> D -> D

fix : (D -> D) -> D -- fixed point operator

zero : D -- partial nat. numbers
succ : D -> D
pred, iszero : D -> D

true, false : D -- partial booleans
if_then_else_ : D -> D -> D -> D

error : D -- error

Encoding of LTC (cont.)

Intuitionistic predicate logic (inductively defined set formers)

-- Existential quantification

data ∃ (P : D -> Set) : Set where
∃-i : (witness : D) -> P witness -> ∃ P

∃-fst : {P : D -> Set} -> ∃ P -> D
∃-fst (∃-i x px) = x

∃-snd : {P : D -> Set} -> (x-px : ∃ P) -> P (∃-fst x-px)
∃-snd (∃-i x px) = px

Encoding of LTC (cont.)

The equality predicate (the identity type)

data _==_ (x : D) : D -> Set where
==-refl : x == x

==-subst : (P : D -> Set){x y : D} -> x == y -> P x -> P y
==-subst P ==-refl px = px

Discrimination rules (postulates)

postulate
true6=false : ¬ (true == false)
06=S : {n : D} -> ¬ (zero == succ n)

Encoding of LTC (cont.)

Conversion rules (postulates)

postulate

-- Conversion rules for predecessor
CP1 : pred zero == zero
CP2 : (n : D) -> pred (succ n) == n

-- The beta-rule
beta : (f : D -> D) -> (a : D) -> (λ f) ‘ a == f a

-- Conversion rule for fixed points
Cfix : (f : D -> D) -> fix f == f (fix f)

Encoding of LTC (cont.)

Totality predicates (inductive families)

-- Introduction rules for the totality predicate
-- for natural numbers
data N : D -> Set where
N-z : N zero
N-s : {n : D} -> N n -> N (succ n)

-- Elimination rule for N
N-ind : (P : D -> Set) -> P zero ->

({n : D} -> N n -> P n -> P (succ n)) ->
{n : D} -> N n -> P n

N-ind P p0 h N-z = p0
N-ind P p0 h (N-s Nn) = h Nn (N-ind P p0 h Nn)

Example: greatest common divisor

The gcd algorithm

gcdh : D -> D
gcdh = \g -> λ (\m -> λ (\n ->

if (iszero n)
then (if (iszero m)

then error
else m)

else (if (iszero m)
then n
else (if (m � n)

then g ‘ (m - n) ‘ n
else g ‘ m ‘ (n - m)))))

gcd : D -> D -> D
gcd m n = fix gcdh ‘ m ‘ n

Example: greatest common divisor

Recursive equations

gcd-00 : gcd zero zero == error

gcd-S0 : {m : D} -> N m -> gcd (succ m) zero == succ m

gcd-0S : {n : D} -> N n -> gcd zero (succ n) == succ n

gcd-S>S : {m n : D} -> N m -> N n -> (succ m > succ n) ->
gcd (succ m) (succ n) ==

gcd (succ m - succ n) (succ n)

gcd-S≤S : {m n : D} -> N m -> N n -> succ m ≤ succ n ->
gcd (succ m) (succ n) ==

gcd (succ m) (succ n - succ m)

Example: termination of gcd

We want to prove the termination property

gcd-N : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
N (gcd m n)

Example: termination of gcd (cont.)

Auxiliary lemmas

gcd-S0-N : {m : D} -> N m -> N (gcd (succ m) zero)

gcd-0S-N : {n : D} -> N n -> N (gcd zero (succ n))

gcd-S>S-N : {m n : D} -> N m -> N n ->
N (gcd (succ m - succ n) (succ n)) ->
succ m > succ n ->
N (gcd (succ m) (succ n))

gcd-S≤S-N : {m n : D} -> N m -> N n ->
N (gcd (succ m) (succ n - succ m)) ->
succ m ≤ succ n ->
N (gcd (succ m) (succ n))

Example: termination of gcd (cont.)

Auxiliary lemma for the case m > n (similar for the case m ≤ n)

gcd-x>y-N : {m n : D} -> N m -> N n ->
... ->
m > n ->
¬ ((m == zero) ∧ (n == zero)) ->
N (gcd m n)

gcd-x>y-N = -- Using pattern matching on the proofs that
-- m and n are totals

Example: termination of gcd (cont.)

The proof

gcd-N : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
N (gcd m n)

gcd-N Nm Nn = N-wf2 P istep Nm Nn
where
P : D -> D -> Set
P i j = ¬ ((i == zero) ∧ (j == zero)) -> N (gcd i j)

istep :
{i j : D} -> N i -> N j ->
({i’ j’ : D} -> N i’ -> N j’ ->

(i’ , j’) <2 (i , j) -> P i’ j’) ->
P i j

istep Ni Nj allAcc = ∨-elim (gcd-x>y-N Ni Nj allAcc)
(gcd-x≤y-N Ni Nj allAcc)
(x>y∨x≤y Ni Nj)

LTC: Original motivation

(P. Aczel 1974, 1980 and J. Smith 1978, 1984)

“The basic LTC framework is intended to be, at the informal
level, the framework of ideas that are being used by Per
Martin-Löf in his semantical explanations for ITT. Those
explanations seem to treat the notions of proposition and truth
as fundamental and use them to explain the notions of type and
element-hood as used in ITT”. (P. F. Mendler and P. Aczel,
1988, p. 393)

LTC: Original motivation (cont.)

Types
Element-hood

����

Propositions
True propositions

��
ITT oo

syntactical
interpretation //

semantical interpretation

33
U W X Y [\ ^ _ ` b c e f g

LTC

semantical
interpretation //

Based on
models of the
λ-calculus

Why use LTC as a programming logic?

(P. Dybjer 1985, 1986, 1990)

ITT oo interpretable //___________

Limitation

""

LTC

No limitation

||

Curry-Howard
isomorphism

builds on

OO

Propositions
True propositions

builds on

OO

Primitive
recursion

General
recursion

“. . . I could not think of dealing with partial elements and functions, that
is, possibly non-terminating programs, before I had freed myself from the
interpretation of propositions as types” (P. Martin-Löf, 1985, p. 184)

Future work

Plug-in for automatic theorem prover

Using Agda’s standard library for proofs in LTC

Comparing LTC with others programming logics and comparing
Agda/LTC with others proof-assistants.

More functional programming language features

Final remarks

LTC is an appropriate constructive programming logic for reasoning about
general recursive functional programs:

It does not have the limitations due to the Curry-Howard
isomorphism, that is to say, we can define general recursive functions
as their Haskell-like versions.

Proving that a program has a type amounts to proving its termination.

It is at least as strong as ITT.

References I

[Acz77] Peter Aczel.

The strength of Martin-Löf’s intuitionistic type theory with one universe.

In S. Miettinen and J. Väänanen, editors, Proc. of the Symposium on
Mathematical Logic (Oulu, 1974), Report No. 2, Department of
Philosopy, University of Helsinki, Helsinki, pages 1–32, 1977.

[Acz80] Peter Aczel.

Frege structures and the notion of proposition, truth and set.

In Jon Barwise, H. Jerome Keisler, and Kenneth Kunen, editors, The
Kleene Symposium, volume 101 of Studies in Logic and the Foundations
of Mathematics, pages 31–59. Amsterdan: North-Holland, 1980.

References II

[Dyb85] Peter Dybjer.

Program verification in a logical theory of constructions.

In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Architecture, volume 201 of LNCS, pages 334–349, 1985.

Appears in revised form as Programming Methodology Group Report 26,
June 1986.

[Dyb86] Peter Dybjer.

Program verification in a logical theory of constructions.

Technical Report Programming Methodology Group, Report 26,
University of Gothenburg and Chalmers University of Technology, 1986.

Revision of [Dyb85].

[Dyb90] Peter Dybjer.

Comparing integrated and external logics of functional programs.

Science of Computer Programming, 14:59–79, 1990.

References III

[MA88] Paul F. Mendler and Peter Aczel.

The notion of a framework and a framework for LTC.

In Proc. of the Third Annual Symposium on Logic in Computer Science
(LICS ’88), pages 392–399. IEEE, 1988.

[ML82] Per Martin-Löf.

Constructive mathematics and computer programming.

In L. J. Cohen, J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic,
Methodology and Philosophy of Science VI (1979), pages 153–175.
Amsterdam: North-Holland Publishing Company, 1982.

[ML85] Per Martin-Löf.

Constructive mathematics and computer programming.

In C. A. R. Hoare and J. C. Shepherdson, editors, Mathematical logic
and programming languages, pages 167–184. Prentice/Hall
International, 1985.

Reprinted from [ML82] with a short discussion added.

References IV

[Smi78] Jan Smith.

On the relation between a type theoretic and a logic formulation of the
theory of constructions.

PhD thesis, Chalmers University of Technology and University of
Gothenburg, Department of Mathematics, 1978.

[Smi84] Jan Smith.

An interpretation of Martin-Löf’s type theory in a type-free theory of
propositions.

The Journal of Symbolic Logic, 49(3):730–753, 1984.

