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Introduction

What if we have written a Haskell-like program and we want to verify it?

How to deal with the possible use of general recursion (non-structural
recursive, nested recursive, and higher-order recursive functions, and
guarded and unguarded co-recursive functions)?
Most of the proof assistants lack a direct treatment for general
recursive functions (Bove, Krauss and Sozeau 2012).

Other features of Haskell-Like programs
Higher-order functions (in functional languages, functions can take
functions as arguments and produce functions as results).
Lazy (the arguments of a function are evaluated when it is strictly
necessary).
Inductive and co-inductive data types (finite and potentially infinite
data).
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Our Goal

To build a computer-assisted framework for reasoning about programs
written in Haskell-like lazy functional languages.
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Our Main Contributions

What programming logic should we use?

We defined and formalised the First-Order Theory of Combinators

Target language Type-free extended versions of Plotkin’s PCF language
Basic data Inductive and co-inductive data types
Specification lan-
guage

First-order logic and predicates representing the property
of being a finite or a potentially infinite value

The theory can
deal with

General recursion, higher-order functions, (co-)inductive
definitions of data types and proofs by (co-)induction

Consistency Based on a translation into Dybjer’s (1985) Logical The-
ory of Constructions
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Our Main Contributions

What proof assistant should we use?
We formalise our programming logics and our examples of verification of
functional programs in the Agda proof assistant:

we use Agda as a logical framework (meta-logical system for
formalising other logics) and
we use Agda’s proof engine: (i) support for inductively defined types,
including inductive families, and function definitions using pattern
matching on such types, (ii) normalisation during type-checking,
(iii) commands for refining proof terms, (iv) coverage checker and
(v) termination checker.
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Our Main Contributions

Can (part of) the job be automatic?
Yes! We can combine Agda interactive proofs and ATPs (automatic
theorem provers for first-order logic) proofs:

we provide a translation of our Agda representation of first-order
formulae into TPTP (Sutcliffe 2009)—a language understood by
many off-the-shelf ATPs—so we can use them when proving the
properties of our programs,
we extended Agda with an ATP-pragma, which instructs Agda to
interact with the ATPs, and
we wrote the Apia program, a Haskell program which uses Agda as a
Haskell library, performs the above translation and calls the ATPs.
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Combining Three Strands of Research

1. Foundational frameworks and logics for lazy functional programs
Why use LTC as a programming logics for lazy functional
programs (Dybjer 1985, 1990; Dybjer and Sander 1989)

MLTT
interpretable //__________

Limitation

##

LTC

No limitation

||

Curry-Howard
isomorphism

builds on

OO

Propositions
True propositions

builds on

OO

Primitive
recursion

General
recursion
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Combining Three Strands of Research

2. Proving correctness of functional programs using first-order automatic
theorem provers
“The CoVer Translator” (Claessen and Hamon 2003)
Using ATPs for proving properties of functional programs by translating
them into first-order logic.

3. Connecting first-order automatic theorem provers to type theory systems
The implementation of the Apia program took some ideas from the
connection of AgdaLight (an experimental version of Agda) to the Gandalf
ATP (Abel, Coquand and Norell 2005).
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First-Order Logic

Terms ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑐 constant
∣ 𝑓(𝑡, … , 𝑡) function

Formulae ∋ 𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood
∣ 𝐴 ⊃ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 binary logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate

Abbreviations

¬𝐴 def= 𝐴 ⊃ ⊥ negation

𝑡 ≠ 𝑡′ def= ¬(𝑡 = 𝑡′) inequality
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Formalising First-Order Logic

Using Agda as an logical framework
Edinburgh Logical Framework (LF) approach
We postulate each logical constant as a type former, and each axiom
and inference rule as a constants of the corresponding type.

Basic inductive approach
The introduction rules of the logical constants are represented by
inductive types, and their elimination rules are defined by pattern
matching.
Inductive approach
To make full use of Agda’s support for proof by pattern matching, we
shall allow proofs by pattern matching in general (not only for the
elimination rules), as long as they are accepted by Agda’s coverage
and termination checker.
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Formalising First-Order Logic

Example (existential quantifier)

𝐴(𝑡) (∃I)∃𝑥.𝐴(𝑥) ∃𝑥.𝐴(𝑥)

[𝐴]
⋮

𝐵 (∃E)𝐵
(side condition for the rule ∃E: 𝑥 is not free in 𝐵 or in any of the
assumptions of the proof of 𝐵 other than 𝐴(𝑥))
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Formalising First-Order Logic

Example (existential quantifier (cont.))

LF- and inductive approaches
Domain of quantification

postulate D : Set

LF-approach
postulate

∃ : (A : D → Set) → Set
_,_ : {A : D → Set}(t : D) →

A t → ∃ A
∃-elim : {A : D → Set}{B : Set} →

∃ A →
(∀ {x} → A x → B) → B

Inductive approaches
data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A

∃-elim : {A : D → Set}{B : Set} →
∃ A → (∀ {x} → A x → B) → B

∃-elim (_ , Ax) h = h Ax
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Formalising First-Order Logic
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Formalising First-Order Logic

Notation: It is possible to replace ∃ (λ x → e) by ∃[ x ] e.

Example
Let 𝐴(𝑥, 𝑦) be a propositional function. The proof of

∃𝑥.∀𝑦.𝐴(𝑥, 𝑦) ⊃ ∀𝑦.∃𝑥.𝐴(𝑥, 𝑦),

is represented as follows.
The theorem:

∃∀ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y

LF- and basic inductive approach proof:
∃∀ h y = ∃-elim h (λ {x} ah → x , ah y)

Inductive approach proof:
∃∀ (x , Ax) y = x , Ax y
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Our Representation of First-Order Logic
Falsehood data ⊥ : Set where

⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()

Truth data ⊤ : Set where tt : ⊤

Disjunction data _∨_ (A B : Set) : Set where
inj₁ : A → A ∨ B
inj₂ : B → A ∨ B

case : ∀ {A B} → {C : Set} → (A → C) → (B → C) → A ∨ B → C
case f g (inj₁ a) = f a
case f g (inj₂ b) = g b

Conjunction data _∧_ (A B : Set) : Set where
_,_ : A → B → A ∧ B

∧-proj₁ : ∀ {A B} → A ∧ B → A
∧-proj₁ (a , _) = a

∧-proj₂ : ∀ {A B} → A ∧ B → B
∧-proj₂ (_ , b) = b
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Our Representation of First-Order Logic
Conditional A → B (non-dependent function type)

Negation ¬_ : Set → Set
¬ A = A → ⊥

Principle of the ex-
cluded middle

postulate pem : ∀ {A} → A ∨ ¬ A

Domain of discourse postulate D : Set

Universal quantifier (x : D) → A (dependent function type)

Existential quantifier data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A

∃-elim : {A : D → Set}{B : Set} →
∃ A → (∀ {x} → A x → B) → B

∃-elim (_ , Ax) h = h Ax

Equality data _≡_ (x : D) : D → Set where refl : x ≡ x

subst : (A : D → Set) → ∀ {x y} → x ≡ y →
A x → A y

subst A refl Ax = Ax
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First-Order Theory of Combinators (FOTC)

The FOTC programming logic
We extended and formalised Dybjer’s (1985) Logical Theory of
Constructions for extended versions of PCF.

type-free extended versions of PCF oo // a notion of
program

FOTC

66llllllllllllllllllll
//

((PP
PPP

PPP
PPP

PPP
PP

FOL with equality
and (co)-inductive predicates

oo // a notion of
specification

inference rules (logical rules,
conversion rules, discrimination rules
and (co-)inductive predicates rules)

oo // a notion of
satisfaction
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The Programming Language of FOTC

FOTC-terms
𝑡 ∶∶= 𝑥 variable

∣ 𝑡 · 𝑡 application
∣ true ∣ false ∣ if partial Boolean constants
∣ 0 ∣ succ ∣ pred ∣ iszero partial natural number constants
∣ f function constant

where f is a new combinator defined by a (recursive) equation

f · 𝑥1 · ⋯ · 𝑥𝑛 = 𝑒[f, 𝑥1, … , 𝑥𝑛].
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The Specification Language of FOTC

FOTC-formulae
𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood

∣ 𝐴 ⊃ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 binary logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate
∣ ℬ𝑜𝑜𝑙(𝑡) total Booleans predicate
∣ 𝒩(𝑡) total natural numbers predicate
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The Specification Language of FOTC

Inductive predicates
ℬ𝑜𝑜𝑙 and 𝒩: unary inductive predicate symbols
ℬ𝑜𝑜𝑙(𝑡): 𝑡 is a total and finite Boolean value (true or false)
𝒩(𝑡): 𝑡 is a total and finite natural number

Example
We express that a function 𝑓 terminates and it maps a total and finite
natural number to a total and finite natural number by the formula

∀𝑡. 𝒩(𝑡) ⊃ 𝒩(𝑓 · 𝑡).
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Conversion and Discrimination Rules of FOTC

Conversion rules

∀𝑡 𝑡′. if · true · 𝑡 · 𝑡′ = 𝑡,
∀𝑡 𝑡′. if · false · 𝑡 · 𝑡′ = 𝑡′,

pred · 0 = 0,
∀𝑡. pred · (succ · 𝑡) = 𝑡,

iszero · 0 = true,
∀𝑡. iszero · (succ · 𝑡) = false.

Discrimination rules for constructors

true ≠ false,
and ∀𝑡. 0 ≠ succ · 𝑡.
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The Inductive Predicate Rules of FOTC

Introduction and elimination rules for the inductive predicates ℬ𝑜𝑜𝑙 and 𝒩

ℬ𝑜𝑜𝑙(true) ℬ𝑜𝑜𝑙(false)
ℬ𝑜𝑜𝑙(𝑡) 𝐴(true) 𝐴(false)

𝐴(𝑡)

𝒩(0)
𝒩(𝑡)

𝒩(succ · 𝑡) 𝒩(𝑡) 𝐴(0)

[𝐴(𝑡′)]
⋮

𝐴(succ · 𝑡′)
𝐴(𝑡)
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Inductive Representation of FOTC

FOTC-terms
The domain universe and the term constructors are formalised by the
following postulates:

postulate
D : Set
_·_ : D → D → D
true false if : D
zero succ pred iszero : D
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Inductive Representation of FOTC

Conversion rules
The conversion rules are formalised by the following postulates:

postulate
if-true : ∀ t {t'} → if · true · t · t' ≡ t
if-false : ∀ {t} t' → if · false · t · t' ≡ t'
pred-0 : pred · zero ≡ zero
pred-S : ∀ n → pred · (succ · n) ≡ n
iszero-0 : iszero · zero ≡ true
iszero-S : ∀ n → iszero · (succ · n) ≡ false

Discrimination rules
The discrimination rules are formalised by the following postulates:

postulate
t≢f : true ≢ false
0≢S : ∀ {n} → zero ≢ succ · n
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Inductive Representation of FOTC

Classical predicate logic with equality
We use the inductive representation of FOL for representing the classical
predicate logic of FOTC.
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Inductive Representation of FOTC

Inference rules for the total and finite natural numbers predicate
The inductive predicate 𝒩 is represented as an inductive family:

data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ · n)

We define the elimination rule for 𝒩 by pattern matching:
N-ind : (A : D → Set) →

A zero →
(∀ {n} → A n → A (succ · n)) →
∀ {n} → N n → A n

N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
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Inductive Representation of FOTC

Convention
Instead of using the constants if, succ, pred and iszero of type D, we define
more readable and writable function symbols of the appropriate types.

if_then_else_ : D → D → D → D
if b then t else t' = if · b · t · t'

succ₁ : D → D
succ₁ n = succ · n

pred₁ : D → D
pred₁ n = pred · n

iszero₁ : D → D
iszero₁ n = iszero · n
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Proving Properties by Structural Recursion

Example (addition is terminating)
The addition of total and finite natural numbers terminates.
The recursive equation:

postulate
_+_ : D → D → D
+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n)
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Proving Properties by Structural Recursion

Example (addition is terminating)
The property:

+-N : ∀ {m n} → N m → N n → N (m + n)

The proof is by pattern matching on the first explicit argument:
Base case:

+-N {n = n} nzero Nn = subst N (sym (+-leftIdentity n)) Nn

Inductive case:
+-N {n = n} (nsucc {m} Nm) Nn =
subst N (sym (+-Sx m n)) (nsucc (+-N Nm Nn))
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Representation of Higher-Order Functions in FOTC

Using FOTC binary application symbol
_·_ : D → D → D

we can represent higher-order functions.

Example
The higher-order function that applies a unary function twice is formalised
by the axioms

twice : D → D → D
twice f x = f · (f · x)
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Adding (Co-)Inductive Predicates to FOTC

FOTC is not one first-order theory, but a family of first-order theories

We work with one FOTC for each verification problem

The function symbols are determined by the program we want to verify

The predicate symbols are determined by the (co-)inductively defined
predicates we need in our proofs, which can be added to FOTC under
certain conditions.
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Adding Inductive Predicates to FOTC

The inductively defined predicates might not only be used for representing
totality properties.

Example (even predicate)

,
ℰ𝑣𝑒𝑛(0)

ℰ𝑣𝑒𝑛(𝑡) ,
ℰ𝑣𝑒𝑛(succ · (succ · 𝑡))

ℰ𝑣𝑒𝑛(𝑡) 𝐴(0)

[𝐴(𝑡′)]
⋮

𝐴(succ · (succ · 𝑡′)) .
𝐴(𝑡)
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Adding Inductive Predicates to FOTC

Example (FOTC elements for working with lists)
To use lists we add the following elements:

FOTC-terms
{[ ], cons, null, head, tail}.

Conversion rules
null · [ ] = true,

∀𝑡 𝑡𝑠. null · (cons · 𝑡 · 𝑡𝑠) = false,
∀𝑡 𝑡𝑠. head · (cons · 𝑡 · 𝑡𝑠) = 𝑡,

∀𝑡 𝑡𝑠. tail · (cons · 𝑡 · 𝑡𝑠) = 𝑡𝑠.
Discrimination rule

∀𝑡 𝑡𝑠. [ ] ≠ cons · 𝑡 · 𝑡𝑠.

Reasoning about Functional Programs by Combining Interactive and Automatic Proofs A. Sicard-Ramírez



Adding Inductive Predicates to FOTC

Example (representation of the ℒ𝑖𝑠𝑡 predicate)
The unary inductive predicate ℒ𝑖𝑠𝑡(𝑡𝑠) representing that 𝑡𝑠 is a total and
finite list of elements.

data List : D → Set where
lnil : List []
lcons : ∀ x {xs} → List xs → List (x ∷ xs)

where
_∷_ : D → D → D
x ∷ xs = cons · x · xs

Remark: It is not necessary to implement the elimination rule of ℒ𝑖𝑠𝑡
because we shall use Agda’s pattern matching instead.
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Adding Co-Inductive Predicates

Example (co-natural numbers)
We implement a co-inductive predicate 𝒞𝑜𝑛𝑎𝑡(𝑡) representing that 𝑡 is
potentially infinite natural number.
The unary predicate:

postulate Conat : D → Set

The unfolding rule:
postulate
Conat-out : ∀ {n} → Conat n →

n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')

The co-induction rule:
postulate
Conat-coind : (A : D → Set) →

(∀ {n} → A n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) →

∀ {n} → A n → Conat n
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Adding Co-Inductive Predicates

Example (streams)
We implement a co-inductive predicate representing potentially infinite list.
The unary predicate:

postulate Stream : D → Set

The unfolding rule:
postulate
Stream-out : ∀ {xs} → Stream xs →

∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs'

The co-induction rule:
postulate
Stream-coind : (A : D → Set) →

(∀ {xs} → A xs →
∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') →

∀ {xs} → A xs → Stream xs
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Combining Interactive and Automatic Proofs

The verification of lazy functional programs requires the use of simple
equational reasoning or simple first-order reasoning (low level
reasoning)

Much of this low-level reasoning can be done automatically with the
help of, for example, automatic theorem provers for FOL

By staying strictly within FOL, we shall be able to employ powerful
ATPs for reasoning about functional programs
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Extended Version of Agda, Apia and ATPs

Agda file + ATP-pragmas + [logical schemata options]

Modified version of Agda

TPTP translationApia

calls the ATPsE Vampire

MetisEquinox SPASS

(Un)proven conjecture

Agda interface file

TPTP formula
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The TPTP Language

In TPTP syntax, each problem contains one or more annotated formulae of
the form

fof(name, role, formula)

where name identifies the formula within the problem, formula is a
FOL-formula and role can be:

conjectures: formulae to be proved
axioms: formulae without proofs
hypotheses: formulae assumed to be true
definitions: formulae used to introduce symbols
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Using the ATP-Pragma

ATP axioms
We tell the ATPs that the formulae A, B and C are axioms by

{-# ATP axiom A B C #-}

ATP conjectures
To automatically prove a formula A, we shall postulate it and add the
ATP-pragma

{-# ATP prove A #-}

that instructs the ATPs to prove the conjecture A.
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Using the Apia Program

Example (commutativity of disjunction)
1. Postulating the property

postulate
A B : Set
∨-comm : A ∨ B → B ∨ A

2. Adding the ATP-pragma
{-# ATP prove ∨-comm #-}

3. Type-checking the program using Agda
$ agda CommDisjunction.agda

4. Proving the conjecture using Apia
$ apia CommDisjunction.agda

Proving the conjecture in /tmp/CommDisjunction/10-8744-comm.tptp
Vampire 0.6 (revision 903) proved the conjecture
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Using the Apia Program

Some command-line options
$ apia --help
Usage: apia [OPTIONS] FILE

--atp=NAME Set the ATP (e, equinox, ileancop, metis,
spass, vampire)
(default: e, equinox, and vampire).

--dump-agdai Dump the Agda interface file to stdout.
--only-files Do not call the ATPs, only to create the

TPTP files.
--time=NUM Set timeout for the ATPs in seconds

(default: 240).
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Trust of our Approach

We use the ATPs as oracles via the Apia program
The user must:

i) to add to the Agda program the required ATP-pragmas,

ii) to run the Apia program on the corresponding Agda file and

iii) to verify that some ATP could prove the formula.

Implementation of the ATPs
Implementation of Apia
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Automatic Proofs in (Classical) First-Order Logic

Example (the principle of the exclude middle)
postulate pem : ∀ {A} → A ∨ ¬ A
{-# ATP prove pem #-}

Example (principle of the indirect proof)
postulate ¬-elim : ∀ {A} → (¬ A → ⊥) → A
{-# ATP prove ¬-elim #-}
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Combined Proofs in the First-Order Theory of Combinators

General methodology
We informing the ATPs that:

1. The conversion and discrimination rules associated with the
FOTC-terms are ATP axioms

2. Each new added recursive equation is an ATP axiom. For example,
postulate
_+_ : D → D → D
+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n)

{-# ATP axiom +-0x +-Sx #-}
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Combined Proofs in the First-Order Theory of Combinators

General methodology
We informing the ATPs that:

3. The inductive data type constructors of the inductive predicates are
ATP axioms. For example,

data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)

{-# ATP axiom nzero nsucc #-}

4. The unfolding rule of the co-inductive predicate is an ATP axiom. For
example,

Conat-out : ∀ {n} → Conat n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')

{-# ATP axiom Conat-out #-}
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Combined Inductive Proofs in FOTC

Example (addition is terminating)
+-N : ∀ {m n} → N m → N n → N (m + n)

The proof is by pattern matching on the first explicit argument.
Base case:

+-N {n = n} nzero Nn = prf
where postulate prf : N (zero + n)

{-# ATP prove prf #-}

Inductive case:
+-N {n = n} (nsucc {m} Nm) Nn = prf (+-N Nm Nn)
where postulate prf : N (m + n) → N (succ₁ m + n)

{-# ATP prove prf #-}
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Combined Co-Inductive Proofs in FOTC

Example (The map-iterate property)
The map-iterate property is a common example to illustrate the use of
co-induction.

First-order versions of the map and iterate functions.
postulate
map : D → D → D
map-[] : ∀ f → map f [] ≡ []
map-∷ : ∀ f x xs → map f (x ∷ xs) ≡ f · x ∷ map f xs.

{-# ATP axiom map-[] map-∷ #-}

postulate
iterate : D → D → D
iterate-eq : ∀ f x → iterate f x ≡ x ∷ iterate f (f · x)

{-# ATP axiom iterate-eq #-}
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Combined Co-Inductive Proofs in FOTC

Example (The map-iterate property)
The bisimilarity relation (equality between potentially infinite terms).

postulate
_≈_ : D → D → Set

≈-out:
∀ {xs ys} → xs ≈ ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys'

≈-coind :
(B : D → D → Set) →
(∀ {xs ys} → B xs ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ]

xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys') →
∀ {xs ys} → B xs ys → xs ≈ ys

{-# ATP axiom ≈-out #-}
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Combined Co-Inductive Proofs in FOTC

Example (The map-iterate property)
The map-iterate property asserts that the potentially infinite lists
map f (iterate f x) and iterate f (f · x) are equals.
To prove the map-iterate property, we use the ≈-coind rule on a particular
bisimulation B (Giménez and Casterán 2007), and the hypotheses required
by ≈-coind are automatically proved by the ATPs.
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Combined Co-Inductive Proofs in FOTC

Example (The map-iterate property)
≈-map-iterate : ∀ f x → map f (iterate f x) ≈ iterate f (f · x)
≈-map-iterate f x = ≈-coind B h₁ h₂
where
B : D → D → Set
B xs ys =

∃[ y ] xs ≡ map f (iterate f y) ∧ ys ≡ iterate f (f · y)
{-# ATP definition B #-}

postulate
h₁ : ∀ {xs ys} → B xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ]

xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys'
{-# ATP prove h₁ #-}

postulate h₂ : B (map f (iterate f x)) (iterate f (f · x))
{-# ATP prove h₂ #-}.
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Apia Implementation

Using Agda as a Haskell library
Working with a not stable API (Agda is a research system)

Agda 𝜂-contraction
Agda performs 𝜂-contraction in the internal representation of their
types. For example, the Agda internal representation of the following
types are the same

t : ∀ d → ∃[ e ] d ≡ e
t' : ∀ d → ∃ (_≡_ d).

Since there is no notion of 𝜂-contraction in first-order theories, the
Apia program performs an 𝜂-expansion on the Agda internal types.
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Apia Implementation

Erasing proof terms
Since there is no notion of proof term in FOL, it is necessary to erase
the proof terms when translating the Agda types into TPTP.
In the translation of

nsucc : ∀ {n} → (Nn : N n) → N (succ₁ n)

the Apia programs erase the proof term Nn.

Parallel ATPs invocation
From our experiments, we can conclude that the ATPs we use are
complementary that is, where one ATP succeed, other ATPs fail, and
the other way around.

Reasoning about Functional Programs by Combining Interactive and Automatic Proofs A. Sicard-Ramírez



Apia Implementation

Erasing proof terms
Since there is no notion of proof term in FOL, it is necessary to erase
the proof terms when translating the Agda types into TPTP.
In the translation of

nsucc : ∀ {n} → (Nn : N n) → N (succ₁ n)

the Apia programs erase the proof term Nn.
Parallel ATPs invocation
From our experiments, we can conclude that the ATPs we use are
complementary that is, where one ATP succeed, other ATPs fail, and
the other way around.

Reasoning about Functional Programs by Combining Interactive and Automatic Proofs A. Sicard-Ramírez



The Automatic Theorem Provers

The overall performance of the ATPs in our formalisation of first-order
theories is quite satisfactory.

ATP (total theorems: 855) Proven thms Unproven
thms

% Success

E 1.8-001 Gopaldhara 828 27 97%
Vampire 0.6 (revision 903) 828 27 97%
Equinox 5.0 alpha (2010-06-29) 775 80 91%
SPASS 3.7 755 100 88%
Metis 2.3 (release 2012-09-27) 588 267 69%
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Verification of Lazy Functional Programs

We illustrate our approach with some examples where we verify some
general (co-)recursive programs and properties.

Non-structural recursive functions

Nested recursive functions

Higher-order recursive functions

Functions without a termination proof

Unguarded co-recursive functions (e.g. verification of the alternating
bit protocol)

Remark: None of the above examples can be directly formalised in Agda or
Coq (they do not pass the termination checker).
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Mirror: A Higher-Order Recursive Function

We prove that the mirror function for general trees (tree structures with an
arbitrary branching) is an involution.

We extend the FOTC-terms with a constructor for trees
postulate node : D → D → D

We mutually define predicates for total and finite trees and forests
data Forest where
fnil : Forest []
fcons : ∀ {t ts} → Tree t → Forest ts → Forest (t ∷ ts)

data Tree where
tree : ∀ d {ts} → Forest ts → Tree (node d ts)

ATP axioms
{-# ATP axiom fnil fcons tree #-}
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Mirror: A Higher-Order Recursive Function

The mirror function
postulate
mirror : D
mirror-eq : ∀ d ts →

mirror · node d ts ≡
node d (reverse (map mirror ts))

ATP axiom
{-# ATP axiom mirror-eq #-}

The property
mirror-involutive : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t

The proof is by pattern matching on the mutually defined totality
predicates for trees and forests.
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Mirror: A Higher-Order Recursive Function

The proof
Base case:

mirror-involutive (tree d fnil) = prf
where postulate prf : mirror · (mirror · node d []) ≡ node d []

{-# ATP prove prf #-}

Inductive case:
mirror-involutive (tree d (fcons {t} {ts} Tt Fts)) = prf
where
postulate

prf : mirror · (mirror · node d (t ∷ ts)) ≡ node d (t ∷ ts)
{-# ATP prove prf helper #-}

The local hypothesis helper follows by induction on forests:
helper : ∀ {ts} → Forest ts →

reverse (map mirror (reverse (map mirror ts))) ≡ ts
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Conclusions

We defined FOTC, a first-order programming logic suitable for
reasoning about mainstream lazy functional programs including those
that use general recursion
We chose a mature system as our interactive proof assistant to
formalise our programming logic. We use Agda’s proof engine for
writing our proofs and we use it as logical framework.
To deal with low level reasoning (equational reasoning and first-order
reasoning), we used off-the-shelf ATPs

We extended Agda with the ATP-pragma
We wrote the Apia program which translated our Agda
representation of first-order formulae into the TPTP and it calls
the ATPs to try to prove the translated conjectures
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Future Work

Proof term reconstruction
We would like to modify our Apia program so that it can return
witnesses for the automatically generated proofs so that they can be
checked by Agda.

Polymorphism
We need to support polymorphism if we want to deal with a larger
fragment of Haskell-like languages.

Connection to Satisfiability Modulo Theories (SMT) solvers
An interesting improvement to our Apia program would be to
integrate SMT solvers into it.
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Thanks!
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