
Parallel Functional Programming

Andrés Sicard-Ramírez

Ciclo de Conferencias Apolo
Universidad EAFIT

2017-09-27



Preliminary Concepts
Parallel computing

“Parallel computing is a type of computation in which many cal-
culations or the execution of processes are carried out simultan-
eously.” [Wikipedia 2017-09-27]

Functional programming
“In computer science, functional programming is a programming
paradigm—a style of building the structure and elements of com-
puter programs—that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable
data.” [Wikipedia 2017-09-27]

2/31



Preliminary Concepts
Parallel computing

“Parallel computing is a type of computation in which many cal-
culations or the execution of processes are carried out simultan-
eously.” [Wikipedia 2017-09-27]

Functional programming
“In computer science, functional programming is a programming
paradigm—a style of building the structure and elements of com-
puter programs—that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable
data.” [Wikipedia 2017-09-27]

3/31



Preliminary Concepts
Side effects

“A side effect introduces a dependency between the global state
of the system and the behaviour of a function... Side effects are
essentially invisible inputs to, or outputs from, functions.” ∗

Pure functions
Pure functions “take all their input as explicit arguments, and produce all
their output as explicit results.” †

Referential transparency
Equals can be replaced by equals.

∗O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell, p. 27.
†Hutton, G. (2007). Programming in Haskell, p. 87.

4/31



Preliminary Concepts
Side effects

“A side effect introduces a dependency between the global state
of the system and the behaviour of a function... Side effects are
essentially invisible inputs to, or outputs from, functions.” ∗

Pure functions
Pure functions “take all their input as explicit arguments, and produce all
their output as explicit results.” †

Referential transparency
Equals can be replaced by equals.

∗O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell, p. 27.
†Hutton, G. (2007). Programming in Haskell, p. 87.

5/31



Preliminary Concepts
Side effects

“A side effect introduces a dependency between the global state
of the system and the behaviour of a function... Side effects are
essentially invisible inputs to, or outputs from, functions.” ∗

Pure functions
Pure functions “take all their input as explicit arguments, and produce all
their output as explicit results.” †

Referential transparency
Equals can be replaced by equals.

∗O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell, p. 27.
†Hutton, G. (2007). Programming in Haskell, p. 87.

6/31



Preliminary Concepts
Evaluation of expressions: Strict and non-strict languages
In non-strict languages nothing is evaluated until necessary.

Example
See whiteboard.

Lazy evaluation = non-strict evaluation + sharing
See Hutton slides: Chapter 15 - Lazy evaluation.∗

∗http://www.cs.nott.ac.uk/~pszgmh/pgp.html .
7/31

http://www.cs.nott.ac.uk/~pszgmh/pgp.html


Preliminary Concepts
Evaluation of expressions: Strict and non-strict languages
In non-strict languages nothing is evaluated until necessary.

Example
See whiteboard.

Lazy evaluation = non-strict evaluation + sharing
See Hutton slides: Chapter 15 - Lazy evaluation.∗

∗http://www.cs.nott.ac.uk/~pszgmh/pgp.html .
8/31

http://www.cs.nott.ac.uk/~pszgmh/pgp.html


Preliminary Concepts
Evaluation of expressions: Strict and non-strict languages
In non-strict languages nothing is evaluated until necessary.

Example
See whiteboard.

Lazy evaluation = non-strict evaluation + sharing
See Hutton slides: Chapter 15 - Lazy evaluation.∗

∗http://www.cs.nott.ac.uk/~pszgmh/pgp.html .
9/31

http://www.cs.nott.ac.uk/~pszgmh/pgp.html


Preliminary Concepts

Definition (Weak head normal form)
A 𝜆-expression is in weak head normal (WHFN) form if and only it is the
form

𝐹 𝐸1 𝐸2 … 𝐸𝑛 where 𝑛 ≥ 0;
and either 𝐹 is a variable or data object or 𝐹 is a 𝜆-abstraction or built-in
function and (𝐹 𝐸1 𝐸2 … 𝐸𝑚) is not a redex for any 𝑚 ≤ 𝑛.
An expression has no top-level redex if and only if it is in weak head normal
form.∗

Example
The following expressions are in WHFN: 42, (+)((−) 4 3), 𝜆𝑥.5 + 1 and
cons 𝑥 𝑥𝑠.

∗Peyton Jones, S. L. (1987). The Implementation of Functional Programming
Languages, p. 198.

10/31



Pure Functional Languages
Examples

Agda (proof-assistant) (version 2.5.3, September 2017)
Clean (version 2.4, December 2011)
Coq (proof-assistant) (version 8.6.1, July 2017)
Curry (functional-logic) (KiCS2 version 0.6.0-b6, July 2017)
Frege (functional-logic) (version 3.24, March 2016)
Haskell (GHC version 8.2.1, July 2017)
Hope (developed in the 1970s)
Idris (proof-assistant) (version 1.1.1, August 5, 2017)
Mercury (functional-logic) (version 14.01.1, September 2014)
Miranda (developed in the 1980s)

11/31



Parallel Computing in Haskell†

Parallel programming in Haskell is deterministic
– If a parallel program gives a result it always is the same.
– “Deterministic parallel programming is the best of both worlds:

testing, debugging and reasoning can be performed on the
sequential program, but the program runs faster when processors
are added.” ∗

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 342.
†The Haskell examples shown in these slides are from [Marlow 2013]. These

examples were tested with GHC 8.2.1 and the parallel 3.2.1.1 library.
12/31



Parallel Computing in Haskell†

Parallel programming in Haskell is deterministic
– If a parallel program gives a result it always is the same.

– “Deterministic parallel programming is the best of both worlds:
testing, debugging and reasoning can be performed on the
sequential program, but the program runs faster when processors
are added.” ∗

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 342.
†The Haskell examples shown in these slides are from [Marlow 2013]. These

examples were tested with GHC 8.2.1 and the parallel 3.2.1.1 library.
13/31



Parallel Computing in Haskell†

Parallel programming in Haskell is deterministic
– If a parallel program gives a result it always is the same.
– “Deterministic parallel programming is the best of both worlds:

testing, debugging and reasoning can be performed on the
sequential program, but the program runs faster when processors
are added.” ∗

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 342.
†The Haskell examples shown in these slides are from [Marlow 2013]. These

examples were tested with GHC 8.2.1 and the parallel 3.2.1.1 library.
14/31



Parallel Computing in Haskell

Parallel Haskell programs do not explicitly deal with synchronisation
or communication

– “Synchronisation is the act of waiting for other tasks to
complete, perhaps due to data dependencies. Communication
involves the transmission of results between tasks running on
different processors. Synchronisation is handled automatically by
the GHC runtime system and/or the parallelism libraries.
Communication is implicit in GHC since all tasks share the same
heap, and can share objects without restriction.” ∗

– “This is both a blessing and a curse.” †

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 343.
†Marlow, S. (2013). Parallel and Concurrent Programming in Haskell, p. 6.

15/31



Parallel Computing in Haskell

Parallel Haskell programs do not explicitly deal with synchronisation
or communication

– “Synchronisation is the act of waiting for other tasks to
complete, perhaps due to data dependencies. Communication
involves the transmission of results between tasks running on
different processors. Synchronisation is handled automatically by
the GHC runtime system and/or the parallelism libraries.
Communication is implicit in GHC since all tasks share the same
heap, and can share objects without restriction.” ∗

– “This is both a blessing and a curse.” †

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 343.
†Marlow, S. (2013). Parallel and Concurrent Programming in Haskell, p. 6.

16/31



Eval, rpar and rseq
The Eval data type
Eval is a polymorphic data type that makes it easier to define parallel
strategies.
data Eval a = ...

The Eval monad
Eval is a strict identity monad, that is, in m >>= f, the computation m is
evaluated before the result is passed to f.
instance Monad Eval where ...

17/31



Eval, rpar and rseq
The Eval data type
Eval is a polymorphic data type that makes it easier to define parallel
strategies.
data Eval a = ...

The Eval monad
Eval is a strict identity monad, that is, in m >>= f, the computation m is
evaluated before the result is passed to f.
instance Monad Eval where ...

18/31



Eval, rpar and rseq
Running the computation
The runEval function performs the Eval computation and returns its result.
runEval ∷ Eval a → a

19/31



Eval, rpar and rseq
The rpar and rseq combinators

“The rpar combinator is used for creating parallelism; it says “my
argument could be evaluated in parallel”, while rseq is used for
forcing sequential evaluation: it says “evaluate my argument now”
(to weak-head normal form).” ∗

rpar ∷ a → Eval a
rseq ∷ a → Eval a

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 346.
20/31



Examples using rpar and rseq
Let f be a function and suppose that f x takes longer to evaluate
than f y.

Example (rpar/rpar)
runEval $ do

fx ← rpar (f x)
fy ← rpar (f y)
return (fx, fy)

Running behaviour: See [Marlow 2013, Figure 2.5].

21/31



Examples using rpar and rseq
Let f be a function and suppose that f x takes longer to evaluate
than f y.

Example (rpar/rseq)
runEval $ do

fx ← rpar (f x)
fy ← rseq (f y)
return (fx, fy)

Running behaviour: See [Marlow 2013, Figure 2.6].

22/31



Examples using rpar and rseq
Let f be a function and suppose that f x takes longer to evaluate
than f y.

Example (rpar/rpar/rseq/rseq)
runEval $ do

fx ← rpar (f x)
fy ← rpar (f y)
rseq fx
rseq fy
return (fx, fy)

Running behaviour: See [Marlow 2013, Figure 2.7].

23/31



Example: Paralleling a Sudoku Solver
The solve function
solve ∷ String → Maybe Grid

Example (sudoku1.hs)
main ∷ IO ()
main = do

[f] ← getArgs
file ← readFile f

let puzzles ∷ [String]
puzzles = lines file

solutions ∷ [Maybe Grid]
solutions = map solve puzzles

print (length (filter isJust solutions))

24/31



Example: Paralleling a Sudoku Solver

Example (sudoku2.hs)
main ∷ IO ()
main = do

[f] ← getArgs
file ← readFile f

let puzzles ∷ [String]
puzzles = lines file

...

25/31



Example: Paralleling a Sudoku Solver

Example (sudoku2.hs (cont.))
...
let as, bs ∷ [String]

(as,bs) = splitAt (length puzzles `div` 2) puzzles

solutions ∷ [Maybe Grid]
solutions = runEval $ do

as' ← rpar (force (map solve as))
bs' ← rpar (force (map solve bs))
rseq as'
rseq bs'
return (as' ++ bs')

print (length (filter isJust solutions))

26/31



Example: Paralleling a Sudoku Solver
Evaluating to normal form
force ∷ NFData a → a → a

Static/Dynamic partitioning
parMap ∷ (a → b) → [a] → Eval [b]
parMap f [] = return []
parMap f (a:as) = do

b ← rpar (f a)
bs ← parMap f as
return (b:bs)

27/31



Example: Paralleling a Sudoku Solver

Example (sudoku3.hs)
main ∷ IO ()
main = do

[f] ← getArgs
file ← readFile f

let puzzles ∷ [String]
puzzles = lines file

solutions ∷ [Maybe Grid]
solutions = runEval (parMap solve puzzles)

print (length (filter isJust solutions))

28/31



Evaluation Strategies for Parallel Haskell
Evaluation Strategies
Evaluation strategies are an import abstraction for adding pure, determin-
istic, parallelism to Haskell programs. They were initially designed in 2002∗

and redesigned in 2010.†

The strategy type
type Strategy a = a → Eval a

∗Trinder, P. W., Loidl, H.-W. and Pointon, R. F. (2002). Parallel and Distributed
Haskells.

†Marlow, S., Maier, P., Loidl, H.-W., Aswad, M. K. and Trinder, P. (2010). Seq No
More: Better Strategies for Parallel Haskell.

29/31



Evaluation Strategies for Parallel Haskell
Evaluation Strategies
Evaluation strategies are an import abstraction for adding pure, determin-
istic, parallelism to Haskell programs. They were initially designed in 2002∗

and redesigned in 2010.†

The strategy type
type Strategy a = a → Eval a

∗Trinder, P. W., Loidl, H.-W. and Pointon, R. F. (2002). Parallel and Distributed
Haskells.

†Marlow, S., Maier, P., Loidl, H.-W., Aswad, M. K. and Trinder, P. (2010). Seq No
More: Better Strategies for Parallel Haskell.

30/31



References
Hutton, G. (2007). Programming in Haskell. Cambridge University Press.
Marlow, S. (2012). Parallel and Concurrent Programming in Haskell. In:
Central European Functional Programming School (CEFP 2011). Ed. by
Zsók, V., Horváth, Z. and Plasmeijer, R. Vol. 7241. Lecture Notes in
Computer Science, pp. 333–401. doi: 10.1007/978-3-642-32096-5_7.
— (2013). Parallel and Concurrent Programming in Haskell. O’Reilly
Media, Inc.
Marlow, S., Maier, P., Loidl, H.-W., Aswad, M. K. and Trinder, P. (2010).
Seq No More: Better Strategies for Parallel Haskell. In: Proceedings of the
Third ACM Haskell Symposium on Haskell (Haskell ’10), pp. 91–102. doi:
10.1145/1863523.1863535.
O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell.
O’REILLY.
Peyton Jones, S. L. (1987). The Implementation of Functional
Programming Languages. Prentice-Hall International.
Trinder, P. W., Loidl, H.-W. and Pointon, R. F. (2002). Parallel and
Distributed Haskells. Journal of Functional Programming 12.4–5,
pp. 469–510. doi: 10.1017/S0956796802004343.

31/31

https://doi.org/10.1007/978-3-642-32096-5_7
https://doi.org/10.1145/1863523.1863535
https://doi.org/10.1017/S0956796802004343

	References

