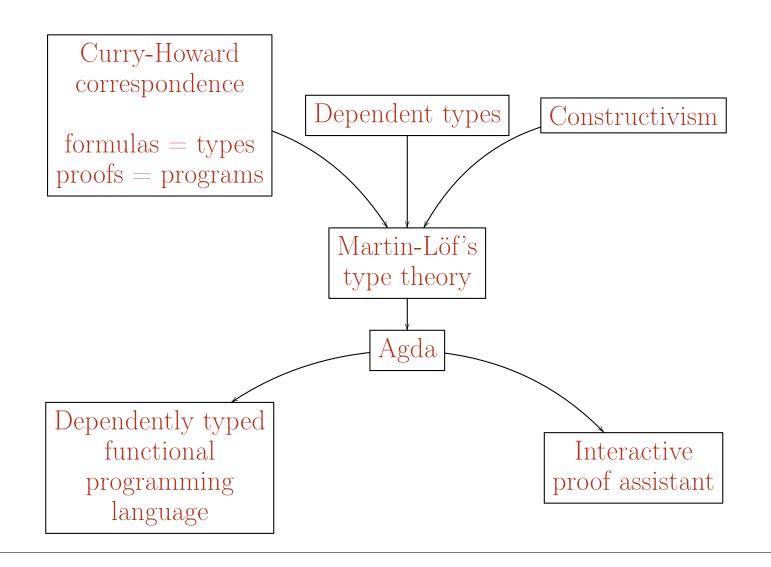
Proofs = Programs

Andrés Sicard-Ramírez

Grupo de Lógica y Computación Universidad EAFIT

Días de la Ciencia Aplicada Universidad EAFIT 2009-09-29

Overview



2

Constructive Interpretation of the Logical Constants

- Proofs are constructions (programs)
- Reject of the principle of the excluded third

The Brouwer-Heyting-Kolmogorov (BHK) interpretation:

A construction of:	Consists of:
--------------------	--------------

$\sigma_1 \wedge \sigma_2$	A construction of σ_1 and a construction of σ_2 .
$\sigma_1 \vee \sigma_2$	An indicator $i \in \{1, 2\}$ and a construction of σ_i .
$\sigma_1 ightarrow \sigma_2$	A method (function) which takes any construction
	of σ_1 to a construction of σ_2 .
\perp	There is not construction.

Intuitionistic Logic: Fragment $NJ(\rightarrow)$

Definition (Judgement).

 Γ : finite set of formulas

 $\Gamma \vdash \sigma$: Γ proves σ

Definition (Rules).

 $\begin{array}{ll} \Gamma, \sigma \vdash \sigma & (\mathrm{Ax}) \\ \\ \hline \Gamma \vdash \sigma \to \tau & (\to I) \end{array} & \begin{array}{l} \hline \Gamma \vdash \sigma \to \tau & \Gamma \vdash \sigma \\ \hline \Gamma \vdash \tau & (\to E) \end{array}$

Example.

$$\frac{\sigma \vdash \sigma}{\vdash \sigma \to \sigma} \; (\to I)$$

Intuitionistic Logic: Fragment $NJ(\rightarrow)$ (cont.)

Convention: The implication is right associative

e.g. $\sigma \to (\tau \to \sigma) \equiv \sigma \to \tau \to \sigma$

Example.

$$\frac{\sigma, \tau \vdash \sigma}{\sigma \vdash \tau \to \sigma} \stackrel{(\to I)}{(\to I)} \\ \frac{\sigma \vdash \tau \to \sigma}{\vdash \sigma \to \tau \to \sigma} \stackrel{(\to I)}{(\to I)}$$

Intuitionistic Logic: Fragment NJ(\rightarrow) (cont.) Example. $\Gamma = \{\sigma \rightarrow \tau \rightarrow \rho, \sigma \rightarrow \tau, \sigma\}$

$$\begin{array}{c|c} \overline{\Gamma \vdash \sigma \rightarrow \tau \rightarrow \rho} & \overline{\Gamma \vdash \sigma} \\ \hline \hline \Gamma \vdash \tau \rightarrow \rho \end{array} (\rightarrow E) & \overline{\Gamma \vdash \tau} & \overline{\Gamma \vdash \sigma} \\ \hline \hline \Gamma \vdash \rho \\ \hline \hline \hline \sigma \rightarrow \tau \rightarrow \rho, \sigma \rightarrow \tau \vdash \sigma \rightarrow \rho \end{array} (\rightarrow I) \\ \hline \hline \sigma \rightarrow \tau \rightarrow \rho \vdash (\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho \end{array} (\rightarrow I) \\ \hline \vdash (\sigma \rightarrow \tau \rightarrow \rho) \rightarrow (\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho \end{array} (\rightarrow I)$$

Lambda-Calculus

Invented by the American mathematician and logician Alonzo Church (around 1930s).

Intended for studying functions and recursion.

Informally

Element	Example	Denotes
Abstraction	$\lambda x.x^2 + 1$	Function $x \mapsto x^2 + 1$
Application	$(\lambda x.x^2 + 1) \ 3$	Function $x \mapsto x^2 + 1$ ap-
		plied to 3
β -reduction	$(\lambda x.x^2 + 1) \ 3 \rightarrow_\beta 3^2 + 1$	The value of function $x \mapsto$
		$x^2 + 1$ applied to 3

Lambda-Calculus (cont.)

Definition (λ -terms).

$\Lambda ::= x$	(variable)
$ \Lambda\Lambda$	(application)
$\mid \lambda x.\Lambda$	(abstraction)

Definition (β -conversion).

$$(\lambda x.M)N \rightarrow_{1\beta} M[x/N].$$

Definition (β -reduction).

 \rightarrow_{β} : Closure reflexive and transitive of $\rightarrow_{1\beta}$.

Lambda-Calculus (cont.)

Example.

 $I \equiv \lambda x.x$ (The identity operator) $K \equiv \lambda xy.x$ (The first coordinate projection operator) $S \equiv \lambda xyz.xz(yz)$ (A stronger composition operator)

For all $M, N, O \in \Lambda$,

 $IM \to_{\beta} M$ $KMN \to_{\beta} M$ $SMNO \to_{\beta} MO(NO)$

Theorem. In the λ -calculus every (Turing machine)-computable function can be represented by a λ -term (combinator).

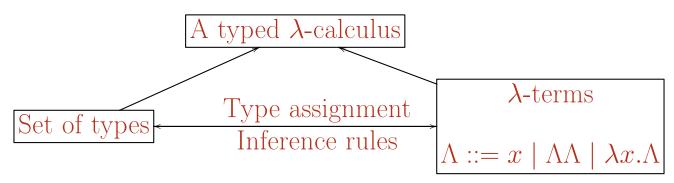
Martin-Löf's Type Theory: Types and Terms

Per Martin-Löf. Swedish logician, philosopher, and mathematician.

Type A	Term $a: A$	
A is a set	a is an element of the set A	$A \neq \emptyset$
A is a proposition	a is a proof (construction) of the	A is true
	proposition A	
A is a problem	a is a method of solving the prob-	A is solvable
	lem A	
A is a specification	a is a program than meets the specification A	A is satisfiable

The Curry-Howard Correspondence: The Simply Typed Lambda-Calculus

The general picture



The Curry-Howard Correspondence: The Simply Typed Lambda-Calculus (cont.)

Definition (Types).

$$T ::= \sigma \\ \mid T \to T$$

(type variables)
(function space)

Definition (Context).

 Γ : Finite set of pairs of the form $\{x_1 : \tau_1, \ldots, x_n : \tau_n\}$.

 $rg(\Gamma): \{\tau \in T \mid (x:\tau) \in \Gamma, \text{ for some } x \}.$

The Curry-Howard Correspondence: The Simply Typed Lambda-Calculus (cont.)

Definition (Judgement $(\Gamma \vdash M : \tau)$).

- 1. The λ -term M has the type τ in Γ
- 2. The program M is a proof of the formula τ in Γ

Theorem (Curry-Howard correspondence).

- 1. If $\Gamma \vdash M : \tau$, then $rg(\Gamma) \vdash \tau$ in $NJ(\rightarrow)$.
- 2. If $\Delta \vdash \tau$ in $NJ(\rightarrow)$, then $\Gamma \vdash M : \tau$ for some M and some Γ with $rg(\Gamma) = \Delta$.

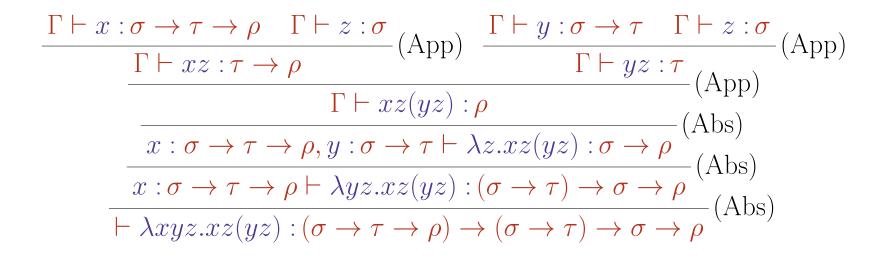
The Curry-Howard Correspondence: The Simply Typed Lambda-Calculus (cont.) Definition (Rules).

 $\begin{array}{ll} \Gamma, \sigma \vdash \sigma & (\mathrm{Ax}) & \Gamma, x : \sigma \vdash x : \sigma & (\mathrm{Var}) \\ \\ \frac{\Gamma, \sigma \vdash \tau}{\Gamma \vdash \sigma \to \tau} (\to I) & \frac{\Gamma, x : \sigma \vdash y : \tau}{\Gamma \vdash \lambda x. y : \sigma \to \tau} (\mathrm{Abs}) \\ \\ \frac{\Gamma \vdash \sigma \to \tau}{\Gamma \vdash \tau} (\to E) & \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} (\mathrm{App}) \end{array}$

The Curry-Howard Correspondence: The Simply Typed Lambda-Calculus (cont.)

Example.

 $\Gamma = \{ x : \sigma \to \tau \to \rho, y : \sigma \to \tau, z : \sigma \}$



Agda

From: Chalmers University of Technology, Sweden

Agda.cabal.Author: Ulf Norell, Nils Anders Danielsson, Catarina Coquand, Makoto Takeyama, Andreas Abel, ...

Agda as an Interactive Theorem Prover

(From A. Setzer. Interactive Theorem Proving for Agda Users)

Interactive Theorem Proving

- Proofs are fully checked by the system
- Proof steps have to be carried out by the user
- Advantages:
 - $-\operatorname{Correctness}$ guaranteed (provided the theorem prover is correct)
 - Everything which can be proved by hand, should be possible to be proved in such systems
- Disadvantages:
 - $-\operatorname{It}$ takes much longer than proving by hand. Similar to programming.
 - $-\operatorname{Requires}$ experts in theorem proving

Agda as an Interactive Theorem Prover (cont.)

Agda's core: The type Set and the dependent function types $(x : A) \rightarrow B$ (Martin-Löf's logical framework.)

Agda code: See file $\mathrm{src}/\mathrm{eg.agda}$

Conclusions

logic	typed λ -calculus
formula	type
propositional variable	type variable
implication	function space
proof	λ -term
assumption	object variable
introduction	constructor
elimination	destructor
normal proof	normal form
provability	inhabitation

(M.-H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006, p. 89)

References

- Agda
 - The Agda wiki: http://wiki.portal.chalmers.se/agda/
 - A. Bove and P. Dybjer. Dependent types at work. In A. Bove,
 L. Soares Barbosa, A. Pardo, and J. Sousa Pinto, editors, *LerNet ALFA Summer School 2008*, volume 5520 of *LNCS*, pages 57–99.
 Springer, 2009.
 - U. Norell. Dependently typed programming in Agda. Eprint: wiki. portal.chalmers.se/agda/, 2008.
- Intuitionist logic
 - D. van Dalen. Logic and Structure. Springer, 4 edition, 2004.

References (cont.)

- Martin-Löf type theories
 - P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
 - B. Nordström, K. Petersson, and J. M. Smith. *Programming in Martin-Löf's Type Theory*. Oxford University Press, 1990.

References (cont.)

• The Curry-Howard correspondence

M.-H. Sørensen and P. Urzyczyn. *Lectures on the Curry-Howard Isomorphism*, volume 149 of *Studies in Logic and the Foundations of Mathematics*. Elsevier, 2006

• The λ -calculus

- J. R. Hindley and J. Seldin. Lambda-Calculus and Combinators. An Introduction. Cambridge University Press, 2008.
- H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics. Elsevier, revised edition, 6th impression edition, 2004.

• The typed λ -calculus

H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, *Handbook of Logic in Computer Science*, volume 2, pages 117–309. Clarendon Press, 1992.