
Proofs = Programs

Andrés Sicard-Ramírez
Grupo de Lógica y Computación

Universidad EAFIT

Días de la Ciencia Aplicada
Universidad EAFIT

2009-09-29

Overview

Curry-Howard
correspondence

formulas = types
proofs = programs

��

Dependent types

��

Constructivism

��

Martin-Löf’s
type theory

��

Agda

zz

��Dependently typed
functional

programming
language

Interactive
proof assistant

2

Constructive Interpretation of the Logical
Constants

• Proofs are constructions (programs)
• Reject of the principle of the excluded third

The Brouwer-Heyting-Kolmogorov (BHK) interpretation:

A construction of: Consists of:
σ1 ∧ σ2 A construction of σ1 and a construction of σ2.
σ1 ∨ σ2 An indicator i ∈ {1, 2} and a construction of σi.
σ1 → σ2 Amethod (function) which takes any construction

of σ1 to a construction of σ2.
⊥ There is not construction.

3

Intuitionistic Logic: Fragment NJ(→)

Definition (Judgement).
Γ: finite set of formulas

Γ ` σ: Γ proves σ

Definition (Rules).

Γ, σ ` σ (Ax)

Γ, σ ` τ
(→ I)

Γ ` σ → τ

Γ ` σ → τ Γ ` σ
(→ E)

Γ ` τ
Example.

σ ` σ
(→ I)

` σ → σ

4

Intuitionistic Logic: Fragment NJ(→) (cont.)
Convention: The implication is right associative

e.g. σ → (τ → σ) ≡ σ → τ → σ

Example.

σ, τ ` σ
(→ I)

σ ` τ → σ
(→ I)

` σ → τ → σ

5

Intuitionistic Logic: Fragment NJ(→) (cont.)
Example. Γ = {σ → τ → ρ, σ → τ, σ}

Γ ` σ → τ → ρ Γ ` σ
(→ E)

Γ ` τ → ρ
Γ ` σ → τ Γ ` σ

(→ E)
Γ ` τ

(→ E)
Γ ` ρ

(→ I)
σ → τ → ρ, σ → τ ` σ → ρ

(→ I)
σ → τ → ρ ` (σ → τ)→ σ → ρ

(→ I)
` (σ → τ → ρ)→ (σ → τ)→ σ → ρ

6

Lambda-Calculus

Invented by the American mathematician and logician Alonzo
Church (around 1930s).

Intended for studying functions and recursion.

Informally

Element Example Denotes
Abstraction λx.x2 + 1 Function x 7→ x2 + 1

Application (λx.x2 + 1) 3 Function x 7→ x2 + 1 ap-
plied to 3

β-reduction (λx.x2 + 1) 3→β 32 + 1 The value of function x 7→
x2 + 1 applied to 3

7

Lambda-Calculus (cont.)
Definition (λ-terms).

Λ ::= x (variable)
| ΛΛ (application)
| λx.Λ (abstraction)

Definition (β-conversion).

(λx.M)N →1β M [x/N].

Definition (β-reduction).
→β: Closure reflexive and transitive of →1β.

8

Lambda-Calculus (cont.)
Example.

I ≡ λx.x (The identity operator)
K ≡ λxy.x (The first coordinate projection operator)
S ≡ λxyz.xz(yz) (A stronger composition operator)

For all M,N,O ∈ Λ,

IM →β M

KMN →β M

SMNO →β MO(NO)

Theorem. In the λ-calculus every (Turing machine)-computable function
can be represented by a λ-term (combinator).

9

Martin-Löf’s Type Theory: Types and Terms

Per Martin-Löf. Swedish logician, philosopher, and mathe-
matician.

Type A Term a : A

A is a set a is an element of the set A A 6= ∅
A is a proposition a is a proof (construction) of the

proposition A
A is true

A is a problem a is a method of solving the prob-
lem A

A is solvable

A is a specification a is a program than meets the
specification A

A is satisfiable

10

The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus

The general picture

A typed λ-calculus

Set of types Type assignment
Inference rules

//

66

λ-terms

Λ ::= x | ΛΛ | λx.Λ

ii

oo

11

The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Definition (Types).

T ::= σ (type variables)
| T → T (function space)

Definition (Context).
Γ: Finite set of pairs of the form {x1 : τ1, . . . , xn : τn}.

rg(Γ) : {τ ∈ T | (x : τ) ∈ Γ, for some x }.

12

The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Definition (Judgement (Γ `M : τ)).

1. The λ-term M has the type τ in Γ

2. The program M is a proof of the formula τ in Γ

Theorem (Curry-Howard correspondence).

1. If Γ `M : τ , then rg(Γ) ` τ in NJ(→).
2. If ∆ ` τ in NJ(→), then Γ ` M : τ for some M and some Γ with
rg(Γ) = ∆.

13

The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Definition (Rules).

Γ, σ ` σ (Ax) Γ, x :σ ` x :σ (Var)

Γ, σ ` τ
(→ I)

Γ ` σ → τ

Γ, x :σ ` y : τ
(Abs)

Γ ` λx.y :σ → τ

Γ ` σ → τ Γ ` σ
(→ E)

Γ ` τ
Γ `M :σ → τ Γ ` N :σ (App)

Γ `MN : τ

14

The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Example.
Γ = {x :σ → τ → ρ, y :σ → τ, z :σ}

Γ ` x :σ → τ → ρ Γ ` z :σ
(App)

Γ ` xz : τ → ρ

Γ ` y :σ → τ Γ ` z :σ
(App)

Γ ` yz : τ
(App)

Γ ` xz(yz) : ρ
(Abs)

x : σ → τ → ρ, y :σ → τ ` λz.xz(yz) :σ → ρ
(Abs)

x :σ → τ → ρ ` λyz.xz(yz) : (σ → τ)→ σ → ρ
(Abs)

` λxyz.xz(yz) : (σ → τ → ρ)→ (σ → τ)→ σ → ρ

15

Agda
From: Chalmers University of Technology, Sweden

Agda.cabal.Author: Ulf Norell, Nils Anders Danielsson, Catarina Coquand,
Makoto Takeyama, Andreas Abel, ...

16

Agda as an Interactive Theorem Prover
(From A. Setzer. Interactive Theorem Proving for Agda Users)

Interactive Theorem Proving

• Proofs are fully checked by the system
• Proof steps have to be carried out by the user
• Advantages:

– Correctness guaranteed (provided the theorem prover is correct)
– Everything which can be proved by hand, should be possible to be
proved in such systems

• Disadvantages:
– It takes much longer than proving by hand. Similar to programming.
– Requires experts in theorem proving

17

Agda as an Interactive Theorem Prover
(cont.)

Agda’s core: The type Set and the dependent function types (x : A)→ B
(Martin-Löf’s logical framework.)

Agda code: See file src/eg.agda

18

Conclusions

logic typed λ-calculus
formula type

propositional variable type variable
implication function space

proof λ-term
assumption object variable
introduction constructor
elimination destructor
normal proof normal form
provability inhabitation

(M.-H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomor-
phism, volume 149 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 2006, p. 89)

19

References

• Agda
– The Agda wiki: http://wiki.portal.chalmers.se/agda/
– A. Bove and P. Dybjer. Dependent types at work. In A. Bove,
L. Soares Barbosa, A. Pardo, and J. Sousa Pinto, editors, LerNet
ALFA Summer School 2008, volume 5520 of LNCS, pages 57–99.
Springer, 2009.

– U. Norell. Dependently typed programming in Agda. Eprint: wiki.
portal.chalmers.se/agda/, 2008.

• Intuitionist logic
D. van Dalen. Logic and Structure. Springer, 4 edition, 2004.

20

References (cont.)

•Martin-Löf type theories
– P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
– B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-

Löf ’s Type Theory. Oxford University Press, 1990.

21

References (cont.)

• The Curry-Howard correspondence
M.-H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Iso-
morphism, volume 149 of Studies in Logic and the Foundations of Math-
ematics. Elsevier, 2006
• The λ-calculus

– J. R. Hindley and J. Seldin. Lambda-Calculus and Combinators. An
Introduction. Cambridge University Press, 2008.

– H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics.
Elsevier, revised edition, 6th impression edition, 2004.

• The typed λ-calculus
H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, pages 117–309. Clarendon Press, 1992.

22

