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Constructive Interpretation of the Logical
Constants

• Proofs are constructions (programs)
• Reject of the principle of the excluded third

The Brouwer-Heyting-Kolmogorov (BHK) interpretation:

A construction of: Consists of:
σ1 ∧ σ2 A construction of σ1 and a construction of σ2.
σ1 ∨ σ2 An indicator i ∈ {1, 2} and a construction of σi.
σ1 → σ2 Amethod (function) which takes any construction

of σ1 to a construction of σ2.
⊥ There is not construction.
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Intuitionistic Logic: Fragment NJ(→)

Definition (Judgement).
Γ: finite set of formulas

Γ ` σ: Γ proves σ

Definition (Rules).

Γ, σ ` σ (Ax)

Γ, σ ` τ
(→ I)

Γ ` σ → τ

Γ ` σ → τ Γ ` σ
(→ E)

Γ ` τ
Example.

σ ` σ
(→ I)

` σ → σ
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Intuitionistic Logic: Fragment NJ(→) (cont.)
Convention: The implication is right associative

e.g. σ → (τ → σ) ≡ σ → τ → σ

Example.

σ, τ ` σ
(→ I)

σ ` τ → σ
(→ I)

` σ → τ → σ
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Intuitionistic Logic: Fragment NJ(→) (cont.)
Example. Γ = {σ → τ → ρ, σ → τ, σ}

Γ ` σ → τ → ρ Γ ` σ
(→ E)

Γ ` τ → ρ
Γ ` σ → τ Γ ` σ

(→ E)
Γ ` τ

(→ E)
Γ ` ρ

(→ I)
σ → τ → ρ, σ → τ ` σ → ρ

(→ I)
σ → τ → ρ ` (σ → τ )→ σ → ρ

(→ I)
` (σ → τ → ρ)→ (σ → τ )→ σ → ρ

6



Lambda-Calculus

Invented by the American mathematician and logician Alonzo
Church (around 1930s).

Intended for studying functions and recursion.

Informally

Element Example Denotes
Abstraction λx.x2 + 1 Function x 7→ x2 + 1

Application (λx.x2 + 1) 3 Function x 7→ x2 + 1 ap-
plied to 3

β-reduction (λx.x2 + 1) 3→β 32 + 1 The value of function x 7→
x2 + 1 applied to 3
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Lambda-Calculus (cont.)
Definition (λ-terms).

Λ ::= x (variable)
| ΛΛ (application)
| λx.Λ (abstraction)

Definition (β-conversion).

(λx.M)N →1β M [x/N ].

Definition (β-reduction).
→β: Closure reflexive and transitive of →1β.
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Lambda-Calculus (cont.)
Example.

I ≡ λx.x (The identity operator)
K ≡ λxy.x (The first coordinate projection operator)
S ≡ λxyz.xz(yz) (A stronger composition operator)

For all M,N,O ∈ Λ,

IM →β M

KMN →β M

SMNO →β MO(NO)

Theorem. In the λ-calculus every (Turing machine)-computable function
can be represented by a λ-term (combinator).
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Martin-Löf’s Type Theory: Types and Terms

Per Martin-Löf. Swedish logician, philosopher, and mathe-
matician.

Type A Term a : A

A is a set a is an element of the set A A 6= ∅
A is a proposition a is a proof (construction) of the

proposition A
A is true

A is a problem a is a method of solving the prob-
lem A

A is solvable

A is a specification a is a program than meets the
specification A

A is satisfiable
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The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus

The general picture

A typed λ-calculus

Set of types Type assignment
Inference rules

//

66

λ-terms

Λ ::= x | ΛΛ | λx.Λ

ii

oo
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The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Definition (Types).

T ::= σ (type variables)
| T → T (function space)

Definition (Context).
Γ: Finite set of pairs of the form {x1 : τ1, . . . , xn : τn}.

rg(Γ) : {τ ∈ T | (x : τ ) ∈ Γ, for some x }.
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The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Definition (Judgement (Γ `M : τ )).

1. The λ-term M has the type τ in Γ

2. The program M is a proof of the formula τ in Γ

Theorem (Curry-Howard correspondence).

1. If Γ `M : τ , then rg(Γ) ` τ in NJ(→).
2. If ∆ ` τ in NJ(→), then Γ ` M : τ for some M and some Γ with
rg(Γ) = ∆.
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The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Definition (Rules).

Γ, σ ` σ (Ax) Γ, x :σ ` x :σ (Var)

Γ, σ ` τ
(→ I)

Γ ` σ → τ

Γ, x :σ ` y : τ
(Abs)

Γ ` λx.y :σ → τ

Γ ` σ → τ Γ ` σ
(→ E)

Γ ` τ
Γ `M :σ → τ Γ ` N :σ (App)

Γ `MN : τ
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The Curry-Howard Correspondence: The
Simply Typed Lambda-Calculus (cont.)

Example.
Γ = {x :σ → τ → ρ, y :σ → τ, z :σ}

Γ ` x :σ → τ → ρ Γ ` z :σ
(App)

Γ ` xz : τ → ρ

Γ ` y :σ → τ Γ ` z :σ
(App)

Γ ` yz : τ
(App)

Γ ` xz(yz) : ρ
(Abs)

x : σ → τ → ρ, y :σ → τ ` λz.xz(yz) :σ → ρ
(Abs)

x :σ → τ → ρ ` λyz.xz(yz) : (σ → τ )→ σ → ρ
(Abs)

` λxyz.xz(yz) : (σ → τ → ρ)→ (σ → τ )→ σ → ρ
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Agda
From: Chalmers University of Technology, Sweden

Agda.cabal.Author: Ulf Norell, Nils Anders Danielsson, Catarina Coquand,
Makoto Takeyama, Andreas Abel, ...
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Agda as an Interactive Theorem Prover
(From A. Setzer. Interactive Theorem Proving for Agda Users)

Interactive Theorem Proving

• Proofs are fully checked by the system
• Proof steps have to be carried out by the user
• Advantages:

– Correctness guaranteed (provided the theorem prover is correct)
– Everything which can be proved by hand, should be possible to be
proved in such systems

• Disadvantages:
– It takes much longer than proving by hand. Similar to programming.
– Requires experts in theorem proving
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Agda as an Interactive Theorem Prover
(cont.)

Agda’s core: The type Set and the dependent function types (x : A)→ B
(Martin-Löf’s logical framework.)

Agda code: See file src/eg.agda
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Conclusions

logic typed λ-calculus
formula type

propositional variable type variable
implication function space

proof λ-term
assumption object variable
introduction constructor
elimination destructor
normal proof normal form
provability inhabitation

(M.-H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomor-
phism, volume 149 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 2006, p. 89)
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