
Parallel Performance Tuning for Haskell: An Example

Andrés Sicard-Ramírez

Ciclo de Conferencias Apolo
Universidad EAFIT

2017-11-08

Motivation

Haskell is a pure functional programming.

Tuning (Haskell) parallel programs is not a trivial task:
garbage collection
lazy evaluation
task granularity
data dependencies
speculation
etc.

A Compiler for Haskell
GHC
The Glasgow Haskell Compiler for Haskell.

GHC run-time system
“To make an executable program, the GHC system compiles your code and
then links it with a non-trivial runtime system (RTS), which handles storage
management, thread scheduling, profiling, and so on.” (from GHC 8.2.1 user
manual)

Parallel Computing in Haskell

Parallel programming in Haskell is deterministic
– If a parallel program gives a result it always is the same.
– “Deterministic parallel programming is the best of both worlds:

testing, debugging and reasoning can be performed on the
sequential program, but the program runs faster when processors
are added.” ∗

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 342.

Parallel Computing in Haskell

Parallel Haskell programs do not explicitly deal with synchronisation
or communication

– “Synchronisation is the act of waiting for other tasks to
complete, perhaps due to data dependencies. Communication
involves the transmission of results between tasks running on
different processors. Synchronisation is handled automatically by
the GHC runtime system and/or the parallelism libraries.
Communication is implicit in GHC since all tasks share the same
heap, and can share objects without restriction.” ∗

– “This is both a blessing and a curse.” †

∗Marlow, S. (2012). Parallel and Concurrent Programming in Haskell, p. 343.
†Marlow, S. (2013). Parallel and Concurrent Programming in Haskell, p. 6.

Sparks

GHC run-time system creates a sparks for some expressions. “Sparks may
be evaluated at some point in the future, or they might not—it all depends
on whether there is a spare core available.” ∗

∗Marlow, S. (2013). Parallel and Concurrent Programming in Haskell, p. 25.

Sparks
During the program execution a spark can be:

converted the spark was executed
overflowed the spark pool is full and the spark was dropped

dud the sparked expression is already evaluated
GC’d the sparked expression was found to be unused by the

program
fizzled the expression was unevaluated at the time it was sparked

but was later evaluated independently by the program

Two Computations

The Fibonacci and the Ackermann functions:

fib ∶ ℕ → ℕ

fib (𝑛) =
⎧{
⎨{⎩

0, if 𝑛 = 0;
1, if 𝑛 = 1;
fib (𝑛 − 1) + fib (𝑛 − 2), otherwise;

ack ∶ ℕ × ℕ → ℕ

ack (𝑥, 𝑦) =
⎧{
⎨{⎩

𝑦 + 1, if 𝑥 = 0;
ack (𝑥 − 1, 1), if 𝑦 = 0;
ack (𝑥 − 1, ack (𝑥, 𝑦 − 1)), otherwise.

Running Example
Task
To compute

fib (39) + ack (3, 11).

Reference and versions
The following examples were adapted from [Jones, Marlow and Singh 2009]
and they were tested with GHC 8.2.1, the parallel library 3.2.1.1 and Thread-
Scope 0.2.9.

Example 1: Sequential Implementation
Source code
See Example1.hs.

Running Example1.hs

$ ghc Example1.hs
$./Example1
63262367

Example 1: Sequential Implementation
Source code
See Example1.hs.

Running Example1.hs

$ ghc Example1.hs
$./Example1
63262367

Basic Parallelism: The par Function

Basic parallelism is supported by the functions∗

par ∷ a → b → b
pseq ∷ a → b → b

from the parallel library, where
par a b is semantically equivalent to b and
par creates a spark for its first argument.

∗Marlow, S., Peyton Jones, S. and Singh, S. (2009). Runtime Support for Multicore
Haskell.

Example 2: A Wrong Parallelisation
Description
Using the par function for running on parallel the computations in Ex-
ample 1.

Source code
See Example2.hs.

Running Example2.hs

$ ghc -threaded Example2.hs
$./Example2 +RTS -N2
63262367

Example 2: A Wrong Parallelisation
Description
Using the par function for running on parallel the computations in Ex-
ample 1.

Source code
See Example2.hs.

Running Example2.hs

$ ghc -threaded Example2.hs
$./Example2 +RTS -N2
63262367

Example 2: A Wrong Parallelisation
Description
Using the par function for running on parallel the computations in Ex-
ample 1.

Source code
See Example2.hs.

Running Example2.hs

$ ghc -threaded Example2.hs
$./Example2 +RTS -N2
63262367

ThreadScope
Description
ThreadScope is a graphical tool for performance profiling of parallel Haskell
programs.

Installation
$ cabal update
$ cabal install threadscope

Compiling your program
$ ghc -threaded -eventlog Foo.hs

Running your program
$./Foo +RTS -N2 -l

Viewing the eventlog
$ threadscope Foo.eventlog

ThreadScope
Description
ThreadScope is a graphical tool for performance profiling of parallel Haskell
programs.

Installation
$ cabal update
$ cabal install threadscope

Compiling your program
$ ghc -threaded -eventlog Foo.hs

Running your program
$./Foo +RTS -N2 -l

Viewing the eventlog
$ threadscope Foo.eventlog

Example 2: A Wrong Parallelisation

From the ThreadScope output we know that we are only using one processor.

Using RTS Statistics
The +RTS -s -RTS option
This option produces run-time system statistics including sparks information:

MUT time the time running the program
GC time the time spent performing garbage collection

Total time MUT time + GC time + ...
Wall clock time elapsed time

Example 2: A Wrong Parallelisation
What it is wrong?

SPARKS: 1 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 1 fizzled)

INIT time 0.000s (0.002s elapsed)
MUT time 19.948s (23.197s elapsed)
GC time 10.092s (5.561s elapsed)
EXIT time 0.000s (0.002s elapsed)
Total time 30.040s (28.761s elapsed)

Example 3: Maybe a Lucky Parallelisation
Description
Swapping the computation of fib and ack in Example 2.

Source code
See Example3.hs.

Example 3: Maybe a Lucky Parallelisation
RTS statistics

SPARKS: 1 (1 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s (0.002s elapsed)
MUT time 12.472s (11.831s elapsed)
GC time 15.988s (5.550s elapsed)
EXIT time 0.004s (0.009s elapsed)
Total time 28.464s (17.391s elapsed)

Feature of a good parallelisation
“A profitably parallel program will have a wall clock time (elapsed time)
which is less than the total time.” ∗

∗Jones, D., Marlow, S. and Singh, S. (2009). Parallel Performance Tuning for
Haskell, p. 82.

Example 3: Maybe a Lucky Parallelisation
What it is wrong?
The fix works by accident because GHC could use a different order of eval-
uation for (+).

Basic Parallelism: The pseq Function

The semantics of the function
pseq ∷ a → b → b

is given by

pseq a b = {⊥, if a = ⊥;
b, otherwise.

that is, pseq a b, evaluates a before b and returns the value of b.∗

∗Marlow, S., Peyton Jones, S. and Singh, S. (2009). Runtime Support for Multicore
Haskell.

Example 4: A Correct Parallelisation
Description
Using the par and pseq functions for running on parallel the computations.

Source code
See Example4.hs.

RTS statistics

SPARKS: 1 (1 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s (0.000s elapsed)
MUT time 12.004s (11.252s elapsed)
GC time 15.168s (5.471s elapsed)
EXIT time 0.000s (0.007s elapsed)
Total time 27.172s (16.730s elapsed)

Example 4: A Correct Parallelisation
Description
Using the par and pseq functions for running on parallel the computations.

Source code
See Example4.hs.

RTS statistics

SPARKS: 1 (1 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s (0.000s elapsed)
MUT time 12.004s (11.252s elapsed)
GC time 15.168s (5.471s elapsed)
EXIT time 0.000s (0.007s elapsed)
Total time 27.172s (16.730s elapsed)

Was Successful the Parallelisation?
Feature of a good parallelisation
“A profitably parallel program will have a wall clock time (elapsed time)
which is less than the total time.
Footnote: “although to measure actual parallel speedup, the wall-clock time
for the parallel execution should be compared to the wall-clock time for the
sequential execution.” ∗

Wall-clock time for Example 1 (Sequential Implementation) and
Example 4 (A Correct Parallelisation)

Example 1: Total time 23.652s (23.749s elapsed)
Example 4: Total time 27.172s (16.730s elapsed)

∗Jones, D., Marlow, S. and Singh, S. (2009). Parallel Performance Tuning for
Haskell, p. 82.

Was Successful the Parallelisation?
Feature of a good parallelisation
“A profitably parallel program will have a wall clock time (elapsed time)
which is less than the total time.
Footnote: “although to measure actual parallel speedup, the wall-clock time
for the parallel execution should be compared to the wall-clock time for the
sequential execution.” ∗

Wall-clock time for Example 1 (Sequential Implementation) and
Example 4 (A Correct Parallelisation)

Example 1: Total time 23.652s (23.749s elapsed)
Example 4: Total time 27.172s (16.730s elapsed)

∗Jones, D., Marlow, S. and Singh, S. (2009). Parallel Performance Tuning for
Haskell, p. 82.

References

Jones, D., Marlow, S. and Singh, S. (2009). Parallel Performance Tuning
for Haskell. In: Proceedings of the ACM SIGPLAN 2009 Haskell Workshop,
pp. 81–92. doi: 10.1145/1596638.1596649.
Marlow, S. (2012). Parallel and Concurrent Programming in Haskell. In:
Central European Functional Programming School (CEFP 2011). Ed. by
Zsók, V., Horváth, Z. and Plasmeijer, R. Vol. 7241. Lecture Notes in
Computer Science, pp. 333–401. doi: 10.1007/978-3-642-32096-5_7.
— (2013). Parallel and Concurrent Programming in Haskell. O’Reilly
Media, Inc.
Marlow, S., Peyton Jones, S. and Singh, S. (2009). Runtime Support for
Multicore Haskell. In: Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’09), pp. 65–77. doi:
https://doi.org/10.1145/1631687.1596563.

https://doi.org/10.1145/1596638.1596649
https://doi.org/10.1007/978-3-642-32096-5_7
https://doi.org/https://doi.org/10.1145/1631687.1596563

	References

