
Using a logical theory of constructions for program
verification

Andrés Sicard Raḿırez
(joint work with Ana Bove and Peter Dybjer)

Universidad EAFIT, Colombia

AIM8, Gothenburg
30 May 2008

The idea

A notion of
program

Agda

Logical Theory of Constructions (LTC)
(as a programming logic for

functional programs)

66mmmmmmmmmmmmmm

//

((RRRRRRRRRRRRR

A notion of
specification

A notion of
satisfaction

Historical background

Logical theory of constructions (LTC): original motivation

(P. Aczel 1974, 1980 and J. Smith 1978, 1984)

“The basic LTC framework is intended to be, at the informal
level, the framework of ideas that are being used by Per
Martin-Löf in his semantical explanations for ITT. Those
explanations seem to treat the notions of proposition and truth
as fundamental and use them to explain the notions of type and
element-hood as used in ITT”. (P. F. Mendler and P. Aczel,
1988, p. 393)

Historical background (cont.)

Types
Element-hood

����

Propositions
True propositions

��Type
theory

oo

syntactical
interpretation //

semantical interpretation

33W X Y [\ ^ _ ` b c e f g
LTC

semantical
interpretation //

Based on
models of the
λ-calculus

Foundational remark

“This will not mean that we consider the logical theory more
fundamental than type theory. Of course, the logical theory also
needs a semantical explanation and this can presumably not be
given as easily as for the type theory in Martin-Löf.” (J. Smith,
1984, p. 730-1)

Why use LTC as a programming logic?

(P. Dybjer 1985, 1986, 1990)

Type theory oo //__________________

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

LTC

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

Curry-Howard
isomorphism

OO

��

Propositions
True propositions

OO

Primitive
recursion

Different
programming logics

“. . . I could not think of dealing with partial elements and
functions, that is, possibly non-terminating programs, before I
had freed myself from the interpretation of propositions as types”
(P. Martin-Löf, 1985, p. 184)

LTC as a programming logic

• A notion of program • Untyped functional programming
language

• A notion of specification • Constructive predicate logic with
equality and inductive predicates

• A notion of satisfaction • Inference rules (logical rules, con-
version rules, and inductive predi-
cates rules)

Agda as a logical framework for LTC

A mixed logical framework approach

Agda

Curry-Howard
isomorphism

The identity type

Inductive
families

Postulates

LTC

Constructive
predicate logic

//_____________________

Equality //______________________

Inductive predicates ..̂^^^^^^^^^^^^^^^^^^^

Untyped functional
programming

language

//____________________

LTC’s terms

A untyped functional programming language

D : an universal domain of terms
‘Weak’ types: Agda’s simple type lambda calculus on D

T ::= D | T → T
t ::= x | \x → t | t t | consts

Constants terms’s approach

Theoretical: fixed

Practical: open

LTC’s terms (cont.)

Constant terms

postulate

-- The universal domain
D : Set

-- LTC booleans
true# : D
false# : D
if#_then_else_ : D -> D -> D -> D

-- LTC natural numbers
zero# : D
succ# : D -> D
rec# : D -> D -> (D -> D -> D) -> D

-- LTC abstraction and application
λ : (D -> D) -> D
’ : D -> D -> D

LTC’s inductive predicates and propositions

LTC’s inductive predicates

inductive predicates: type theory types for the LTC-programs

LTC’s propositions

Constructive predicate logic with equality + inductive predicates

P ::= (∀x)P | (∃x)P | P ⊃ P |P ∧ P | P ∨ P | ⊥ | t == t

| N(t) (natural numbers)

LTC’s inference rules: logical rules

Logical constants: standard ones

Equality rules

t == t
s == t P(s)

P(t)

-- The identity type
data _==_ {A : Set}(x : A) : A -> Set where
==-refl : x == x

==-subst : {A : Set}(P : A -> Set){x y : A} -> x == y ->
P x -> P y

==-subst P ==-refl px = px

LTC’s inference rules: natural numbers

Introduction rules

N(zero#)
N(n)

N(succ# n)

Elimination rule

N(n) P(zero#)

[N(x),P(x)]

...
P(succ# x)

(*)
P(n)

(*) x must not occur free in any assumption on wich P(succ# x) depends
other than N(x) and P(x)

LTC’s inference rules: natural numbers (cont.)

-- The natural numbers type

data N : D -> Set where
zeroN : N zero#
succN : (n : D) -> N n -> N (succ# n)

-- Induction principle on N (elimination rule)

N-ind : (P : D -> Set) ->
P zero# ->
({n : D} -> N n -> P n -> P (succ# n)) ->
{n : D} -> N n -> P n

N-ind P p0 h zeroN = p0
N-ind P p0 h (succN n Nn) = h Nn (N-ind P p0 h Nn)

LTC’s inference rules: conversion rules

postulate
-- Conversion rules for booleans
CB1 : (a : D){b : D} -> if# true# then a else b == a
CB2 : {a : D}(b : D) -> if# false# then a else b == b

-- Conversion rules for natural numbers
CN1 : (a : D)(f : D -> D -> D) -> rec# zero# a f == a
CN2 : (a n : D)(f : D -> D -> D) ->

rec# (succ# n) a f == f n (rec# n a f)

-- Conversion rule for the abstraction and the application
beta : (f : D -> D)(a : D) -> (λ f) ’ a == f a

Example

-- Recall we postulated
λ : (D -> D) -> D
’ : D -> D -> D
beta : (f : D -> D)(a : D) -> (λ f) ’ a == f a

-- non-terminating programs
ω : D
ω = λ(\x -> x ’ x)

Ω : D
Ω = ω ’ ω

-- a fixed point operator
fix : (D -> D) -> D
fix f = λ (\x -> f(x ’ x)) ’ λ (\x -> f(x ’ x))

Example: the greatest common divisor using repeated
subtraction

- : D -> D -> D
eq : D -> D -> D
gt : D -> D -> D

postulate
gcd : D -> D -> D

-- first version
Cgcd : (m n : D) ->

gcd m n == if# (eq n zero#)
then m
else if# (eq m zero#)

then n
else if# (gt m n)

then gcd (m - n) n
else gcd m (n - m)

Example: the greatest common divisor using repeated
subtraction (cont.)

- : D -> D -> D
eq : D -> D -> D
gt : D -> D -> D

postulate
gcd : D -> D -> D

-- second version
Cgcd1 : (m : D) -> gcd m zero# == m
Cgcd2 : (n : D) -> gcd zero# n == n
Cgcd3 : (m n : D) -> gcd (succ# m) (succ# n) ==

if# (gt (succ# m) (succ# n))
then gcd ((succ# m) - (succ# n)) (succ# n)
else gcd (succ# m) ((succ# n) - (succ# m))

Program verification on the logical theory of constructions

Example (the greatest common divisor using repeated subtraction)

Given the program to calculate the gcd, we want to prove

(∀m, n ∈ N)(gcdP(m, n, (gcd m n))

where

(∀x ∈ A)B(x) ≡def (∀x)(A(x) ⊃ B(x))

(∃x ∈ A)B(x) ≡def (∃x)(A(x) ∧ B(x))

a | b ≡def (∃k ∈ N)(b == k ∗ a)

gcdP(m, n, r) ≡def (r | m) ∧
(r | n) ∧
((∀r ′ ∈ N)(r ′ | m ∧ r ′ | n ⊃ r ≥ r ′))) ∧
N(r)

Future work

To strengthen the mixed logical framework approach (i.e. to use the
primitive recursive functions of Agda)

nat2n# : Nat -> D

nat2n : (n : Nat) -> N (nat2n# n)

n#2nat : (d : D) -> N d -> Nat

New Agda feature: foreign function interface for calling Haskell
functions from Agda

How we can combine our implementation with an automatic theorem
prover?

Future work (cont.)

LTC and others programming logics

TT LTC LCF . . .

Logic constructive constructive classical . . .
Logic integrated external external . . .
Recursion primitive general general . . .
Objects total partial partial . . .

Termination properties on LTC (simple types)

a ∈ A ≡def A(a)

b ∈ Bool ≡def b == true# ∨ b == false#

q ∈ A + B ≡def (∃x ∈ A)(q == inl# x)) ∨ (∃x ∈ B)(q == inr# x))

f ∈ A→ B ≡def (∃b)((∀x)(x ∈ A ⊃ b(x) ∈ B)) ∧ f == λ(b))

Final remarks

The logical theory of constructions is an appropriate constructive
programming logic for reasoning about general recursive functional
programs:

It has not the limitations due to the Curry-Howard isomorphism, that
is to say, we can define general recursive functions as their Haskell-like
versions.

Proving that a program has a type (i.e. its value belongs to a simple
type) amounts to proving its termination

It is at least as strong as Martin-Löf type theory

References I

[Acz77] Peter Aczel.

The strength of Martin-Löf’s intuitionistic type theory with one universe.

In Proc. of the symposium on mathematical logic (Oulu, 1974), Report
No. 2, Department of Philosopy, University of Helsinki, Helsinki, pages
1–32, 1977.

[Acz80] Peter Aczel.

Frege structures and the notion of proposition, truth and set.

In The Kleene Simposium, pages 31–59. Amsterdan: North-Holland,
1980.

[Dyb85] Peter Dybjer.

Program verification in a logical theory of constructions.

In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Architecture, volume 210 of LNCS, pages 334–349, 1985.

References II

[Dyb86] Peter Dybjer.

Program verification in a logical theory of constructions.

Technical report, Programming Methodology Group Report 26,
University of Göteborg and Chalmers University of Technology, 1986.

Revision of [Dyb85].

[Dyb90] Peter Dybjer.

Comparing integrated and external logics of functional programs.

Science of Computer Programming, 14:59–79, 1990.

[MA88] Paul F. Mendler and Peter Aczel.

The notion of a framework and a framework for LTC.

In Proc. of the Third Annual Symposium on Logic in Computer Science
(LICS ’88), pages 392–399. IEEE, 1988.

References III

[ML82] Per Martin-Löf.

Constructive mathematics and computer programming.

In L. J. Cohen, J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic,
Methodology and Philosophy of Science VI (1979), pages 153–175.
Amsterdam: North-Holland Publishing Company, 1982.

[ML85] Per Martin-Löf.

Constructive mathematics and computer programming.

In C. A. R. Hoare and J. C. Shepherdson, editors, Mathematical Logic
and Programming Languages, pages 167–184. Prentice/Hall
International, 1985.

Reprinted from [ML82] with a short discussion added.

References IV

[Smi78] Jan Smith.

On the relation between a type theoretic and a logic formulation of the
theory of constructions.

PhD thesis, Chalmers University of Technology and Göteborg University,
Department of Mathematics, 1978.

[Smi84] Jan Smith.

An interpretation of Martin-Löf’s type theory in a type-free theory of
propositions.

The Journal of Symbolic Logic, 49(3):730–753, 1984.

