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Non-Classical Logics
Some sources for non-classical logics
▶ Reject of the classic logic principles.
▶ Reduction of the classic logical constants.
▶ Expansion of the classical logical constants.
▶ Reject of the classical properties of the consequence relation.
▶ Modifications to the mathematical structure of the classical consequence relation.
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Non-Classical Logics

Graham Priest (1948 -)
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Non-Classical Logics
Notation
Set of well-formed formulae F
Formulae α, β, δ, . . .
Theories ∆, Γ, . . .
Logical constants ¬, ∧, ∨, →, ⊥
Consequence relations ⊢,⊨,⊩
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Reject of the Principle of Bivalence
Principle of bivalence
Every proposition is either true or false.
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Reject of the Principle of Bivalence
Many-valued logics
The number of truth values is not restricted to only two. See, e.g. (Rescher 1969; Peña 1993).
▶ Truth values (Peña 1993, pp. 33-35)

▶ designed
▶ anti-designed
▶ designed and anti-designed
▶ neither designed nor anti-designed
▶ no designed
▶ no anti-designed
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Reject of the Principle of Bivalence
Many-valued logics (continuation)
▶ Semantical universe (Peña 1993, p. 21)

(i) 0: Minimal element, anti-designed and no designed.
(ii) 1: Maximal element, designed and no anti-designed.
(iii) ∀α (0 ≤ |α| ≤ 1), where |α| is the truth-value of α and ≤ is a partial or total order.
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Reject of the Principle of Bivalence
Example (Kleene’s K3 logic)
▶ Semantical universe

1 true designed
½ undefined anti-designed
0 false anti-designed

▶ Truth tables
¬

1 0
½ ½
0 1

∧ 1 ½ 0
1 1 ½ 0
½ ½ ½ 0
0 0 0 0

∨ 1 ½ 0
1 1 1 1
½ 1 ½ ½
0 1 ½ 0

→ 1 ½ 0
1 1 ½ 0
½ 1 ½ ½
0 1 1 1
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Reject of the Principle of Bivalence
Example (continuation)
▶ A feature

There is not α such that ⊨K3 α.
▶ See, e.g. (Epstein 1990).
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Reject of the Principle of Explosion
Principle of explosion (pseudo-Scotus, ex contradictione sequitur quod libet)

∀Γ ∀α ∀β (Γ, α, ¬α ⊢CL β).

Paraconsistent logics

∃Γ ∃α ∃β (Γ, α, ¬α ̸⊩P β).

See, e.g. (Bobenrieth 1996) and (Carnielli and Marcos 2002).
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Reject of the Principle of Explosion
Example (da Costa’s C1 logic)
▶ Bivalent semantic for C1

A valuation for C1 is a function

υ : F(C1) → {0, 1}

such that:
(i) υ(α ∗ β) has classical behavior (∗ ∈ {∧, ∨, →})
(ii) for negation

υ(α) = 0 ⇒ υ(¬α) = 1,

υ(¬¬α) = 1 ⇒ υ(α) = 1.
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Reject of the Principle of Explosion
Example (continuation)
▶ A consequence

The semantic for C1 is not truth-functionality:

υ(α) = 1 ⇏ υ(¬α) = 1,

υ(α) = 1 ⇏ υ(¬α) = 0.

▶ A feature
The logic C1 admits a strong negation

∼ α
def= ¬α ∧ α◦,

where ◦ is the well-behavior operator. The negation ∼ is a classical negation.
▶ See, e.g. (Marcos 1999, p. 47).
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Reject of the Principle of the Excluded Third
Principle of the excluded third

⊢CL α ∨ ¬α, for all formula α.

Intuitionistic logics
▶ Computational meaning of the logical constants
▶ Propositions-as-types correspondence

See, e.g. (van Dalen 2013) and (Sørensen and Urzyczyn 2006).
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Reject of the Principle of the Excluded Third
The Brouwer-Heyting-Kolmogorov (BHK) interpretation

A construction of Consists of
α1 ∧ α2 A construction of α1 and a construction of α2.

α1 ∨ α2 An indicator i ∈ {1, 2} and a construction of αi .

α1 → α2 A method (function) which takes any construction of α1 to a construc-
tion of α2.

⊥ There is not construction.

¬α
def= α → ⊥ A method (function) which takes any construction of α into a nonex-

istent object.
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Reject of the Principle of the Excluded Third
The Brouwer-Heyting-Kolmogorov (BHK) interpretation (continuation)

A construction of Consists of
∃ x ∈ U.φ(x) An element a ∈ U and a construction of φ(a).

∀ x ∈ U.φ(x) A method (function) which takes any element x ∈ U to a construction
of φ(x).
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Reject of the Principle of the Excluded Third
Proofs by contradiction (or reductio ad absurdum) and proofs of negations

Proof by contradiction

[¬β]
...
⊥
β

Proof of negation (Bauer 2017)

[β]
...
⊥
¬β
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Reject of the Principle of the Excluded Third
Justifications

Proof by contradiction

[¬β]
...
⊥ (conditional proof)

¬β → ⊥
(¬α

def= α → ⊥)¬¬β
(⊢ ¬¬α → α)

β

Proof of negation

[β]
...
⊥ (conditional proof)

β → ⊥
(¬α

def= α → ⊥)¬β
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Reject of the Principle of the Excluded Third
Some features
▶ Since α ∨ ¬α and ¬¬α → α are equivalents the proofs by contradiction are not accepted

in intuitionistic logics.

▶ The proofs of negations are intuitionistically valid.
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Expansion of the Logical Constants
Example
Modal logics (Hughes and Cressivell 1998)
(□ : necessity, ♢ : possibility)
▶ Temporal logics
▶ Epistemic logics
▶ Deontic logics
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Reduction of the Logical Constants
Possible reductions

▶ Positive logics
▶ Implicative logics
▶ . . .

See, e.g. (Rasiowa 1974).

General question
What is a logical constant? (for example {¬, ∧, ∨, →})
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A General Definition of Logic?

Definition
A logic L is a structure L = ⟨F ,⊩⟩ where the consequence relation ⊩ defined on P(F) × F
satisfies (Carnielli and Marcos 2002; Gabbay 1994; Béziau 2000; Deakin and Shillito 2025):

If α ∈ Γ, then Γ ⊩ α (reflexivity)
If Γ ⊩ α and Γ ⊆ ∆, then ∆ ⊩ α (monotony)
If Γ ⊩ α and ∆, α ⊩ β, then Γ, ∆ ⊩ β (transitivity)
If Γ ⊩ α then σΓ ⊩ σα, for every substitution σ (structurality)

Remark
A ‘Tarksian logic’ is a logic whose consequence relation satisfies the above first three proper-
ties (Carnielli and Matulovic 2015). See also (Béziau 2005).

Remark
The above definition was proposed by Tarski in 1930 and extended with substitution invariance
in (Łos and Suszko 1958).
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Reject of Properties of the Consequence Relation
Non-reflexivity logics
Alfabar logics (Krause and Béziau 1997). Schrödinger Logics (da Costa and Krause 1994).
Weber (2017) says that (Strawson 1964) questions reflexivity.

Example
Let L = ⟨F ,⊩⟩ be a logic such that Γ ⊩ α iff exists Γ′ such that
(i) Γ′ ⊆ Γ,
(ii) Γ′ is consistent and
(iii) Γ′ ⊢CL α.
Therefore, p ∧ ¬p ̸⊩ p ∧ ¬p (Krause and Béziau 1997).
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Reject of Properties of the Consequence Relation
Non-monotonic logics
‘family of formal frameworks. . . in which reasoners draw conclusions tentatively, reserving the
right to retract them in the light of further information.’ (Strasser and Antonelli 2014)
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Reject of Properties of the Consequence Relation
Non-transitive logics
Weber (2017) mentions some non-transitive logics by Smiley (1959) and Ripley. See also (Weir
2015) and (Ripley 2018).
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Modifications to the Mathematical Structure of the Consequence Relation
Multiple consequence
⊩⊆ P(F) × P(F)

Sub-structural logics

▶ Multi-set ̸= set: ({A, A, B} ≠ {A, B}), therefore α, α, β ⊩ γ does not imply α, β ⊩ γ.
▶ α, β ⊩ γ does not imply β, α ⊩ γ.
▶ In general, a theory Γ has not to be a set.

See, e.g. (Restall 2004).
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Universal Logic
Béziau’s ‘approach’
(i) Béziau (2000). ‘What is Paraconsistent Logic?’
(ii) Béziau, de Freitas and Viana (2001). ‘What is Classical Propositional Logic? (A Study in

Universal Logic)’.
(iii) Béziau (2002). ‘Are Paraconsistents Negations Negations?’
(iv) Béziau (2004). ‘What Is The Principle of identity’.
(v) Béziau (2010). ‘What Is a Logic. Towards Axiomatic Emptiness’.
(vi) Béziau (2022). ‘Is Logic Exceptional’.
(vii) Béziau (2023). ‘Why Logics’.
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Universal Logic
Some questions
(i) Other approaches to the consequence relations (e.g. visual inference).
(ii) Equivalence criteria between semantics, syntax and algebra for a logic.
(iii) Equivalence criteria between logics (e.g. possible-translation semantics).
(iv) Minimal properties of the logical connectives (e.g. what is a negation?).
(v) Compatibility between the logical connectives.
(vi) High-order logic extensions.
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Universal Logic

Universal logic is not itself a system of logic; it is a general study of the various
systems of logic, considered as logical structures, in the same way that universal
algebra is a general study of algebras considered as algebraic structures. Universal
logic promotes unity in diversity not by reducing everything to one system but by
developing concepts in a general framework to have a better understanding of the
universe of logic systems. (Béziau 2023, p. 150)
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Possible Applications

▶ Mathematical theories construction (Mortensen 1995).
▶ Hypercomputation (Sylvan and Copeland 1998; Agudelo and Sicard 2004)
▶ ‘Or maybe paraconsistent logic will save us from the tricephalous CGC-monster (CGC for

Cantor-Gödel-Church) by providing foundations for finite decidable complete
mathematics.’ (Béziau 1999, p. 16)
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Conclusions

▶ Tolerance principle in Mathematics (Newton da Costa, 1958):

‘Desde el punto de vista sintáctico-semántico, toda teoría es admisible, desde
que no sea trivial. En sentido amplio, existe, en matemática, lo que no sea
trivial.’ (Bobenrieth 1996, p. 180)

▶ Logical pluralism. See, e.g. (Bueno 2002).
▶ A new crisis? New opportunities?
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A Category of Logics (Bonus Slides)
Definition
A category C is given by the following data:
▶ A class of objects Obj(C).
▶ A class of arrows or morphisms Mor(C).
▶ The functions dom, cod : Mor(C) → Obj(C).

Notation:
f : A → B ≡ f ∈ Mor(C), dom f = A, cod f = B.

▶ For A ∈ Obj(C), the identity arrow idA : A → A.
▶ A composition operator ◦ : Mor(C) × Mor(C) → Mor(C).
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A Category of Logics
These data are subject to the follow conditions:

▶ g ◦ f is defined iff cod g = dom f .
▶ If g ◦ f is defined, then

dom(g ◦ f ) = dom f and cod(g ◦ f ) = cod g .

▶ For any f : A → B,
idB ◦ f = f and f ◦ idA = f .

▶ For any f : A → B, g : B → C , h : C → D,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .
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A Category of Logics
Example (The category Set)
▶ Obj(Set): Sets
▶ Mor(Set): functions
▶ The identity arrow idA: The identity function
▶ The composition operator ◦: The composition of functions

Technical remark
The usual definition of a function f : A → B as a set f ⊆ A × B which is single-valued and
totally defined is not sufficient to uniquely determine cod f . Therefore it is necessary to define
f as a triple (A, graph(f ), B).
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A Category of Logics
Example (The category 3)

A

B

C

idA

f

h

idB

g

idC
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A Category of Logics
Example
Almost every known example of a mathematical structure with the appropriate structure-
preserving map yields a category.

Category Objects Morphisms
Set Sets Functions
Pfn Sets Partial functions
Vect Vector spaces Linear transforms
Top Topological spaces Continuous functions
Poset Posets Monotone functions
CPO Complete posets Continuous functions
Lat Lattices Structure preserving homomorphisms
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A Category of Logics
Example
A deductive system ⊩D can be turned on a category D
▶ Obj(D): Formulae
▶ Mor(D): Proofs
▶ The identity arrow idA : A → A: A proof of A ⊩D A
▶ The composition operator ◦: Transitivity of the ⊩D

f : A → B g : B → C
g ◦ f : A → C
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