Lambda Calculus

Andrés Sicard-Ramirez

Universidad EAFIT

Semester 2010-2

Introduction

Bibliography

e Textbook: Hindley, J. Roger and Seldin, Jonathan P. [2008]. Lambda-Calculus and
Combinators. An Introduction. Cambridge University Press.

e Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus.
Revisited edition.

e Barendregt, H. P. [1981] [2004]. The Lambda Calculus. Its Syntax and Semantics.
Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of
Mathematics. Elsevier.

@ Paulson, Lawrence C. [2000]. Foundations of Functional Programming. Lecture notes.
URL: [visited on 10/06/2020].

3/65

http://www.cl.cam.ac.uk/~lp15/

Lambda Calculus

What is the Lambda Calculus?

Invented by Alonzo Church (around 1930s).

?

@ The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.

e Computability model.

@ Model of untyped functional programming languages.

Lambda Calculus

5/65

Introduction

@ A-calculus is a collection of several formal systems
@ A-notation

o Anonymous functions
o Currying

6/65

Introduction

Definition (A-terms)
The set of A-terms is inductively defined by

veV =uve A terms
c € C = ce \terms
M,N € \terms = (MN) € \-terms
M € Mterms,xz € V = (Az.M) € A\-terms

where V/C'is a set of variables/constants.

(atom
(atom

(application

— ~— — —

(abstraction

7/65

Introduction

Conventions and syntactic sugar
@ M = N means the syntactic identity

@ Application associates to the left
MN1N2 e Nk means (((MNl)NQ)Nk)

@ Application has higher precedence
Az.PQ means (A\z.(PQ))

@ \x1zo...xn.M means (Ax1.(Aza.(... A\xp.M)...)))

Example

Aeyz.zz(yz))uvw = ((Ax.(Ay.(Az.((x2)(y2)))))u)v)w).

8/65

Term-Structure and Substitution

Substitution ([N/z]|M)

The result of substituting N for every free occurrence of = in M, and changing bound variables
to avoid clashes.

N/ee =N, W
[N/z]a =aq, for all atoms a # z; (2)
[N/z|(PQ) = ([N/z]P)([N/z]Q); (3)
[N/z](Ax.P) = \x.P; (4)
[N/x](\y.P) = \y.P, yZx,x & FV(P); (5)
[N/z](Ay.P) = \y.[N/x]P, y#Zxz,x € FV(P),y ¢ FV(N); (6)
[N/z|(Ay.P) = Az.[N/z][z/y] P, yZx,x € FV(P),y € FV(N); (7)

where in the last equation, z is chosen to be a variable ¢ FV(NP).

9/65

Term-Structure and Substitution

Example
[(Ay.vy)/z](y(Av.zv)) = y(Az.(Ay.vy)z) (with 2 Z v, y, x).

Lambda Calculus 10/65

Term-Structure and Substitution

a~-conversion or changed of bound variables
Replace Ax.M by A\y.[y/z]M (y € FV(M)).

a-congruence (P =, Q)

P is changed to @ by a finite (perhaps empty) series of a-conversions.

Example
Whiteboard.

Theorem
The relation =, is an equivalence relation.

Lambda Calculus 11/65

Beta-Reduction

[-contraction (- >1g)

(Ax.M)N: p-redex

[N/xz|M: contractum

(Ax.M)N >ig [N/z|M

P >3 Q: Replace an occurrence of (Ax.M)N in P by [N/z|M.

Example
Whiteboard.

12/65

Lambda Calculus

Beta-Reduction

[-reduction (P g Q)

P is changed to @ by a finite (perhaps empty) series of -contractions and a-conversions.

Example

(Az.(A\y.yx)z)v g 2v.

13/65

Lambda Calculus

Beta-Reduction

[B-normal form
A term which contains no [-redex.

B-nf: The set of all 8-normal forms.

Example
Whiteboard.

14/65

Lambda Calculus

Beta-Reduction

Theorem (The Church-Rosser theorem for >3 (the diamond property))
P

/N

P l>5 M P DB N M N
AT.M >3 TAN >3 T

3r

Corollary
If P has a S-normal form, it is unique modulo =,; that is, if P has 8-normal forms M and N,

then M =, N.

Proof
Whiteboard.

Lambda Calculus

15/65

Beta-Equality

[-equality or B-convertibility (P =3 Q)
Exist Py, ..., P, such that
e Py=P
o P, =0Q
o (Vi<n—1)(P;>pg Piy1 vV Pyivig P vV Pi=4 Piy1)

Theorem (Church-Rosser theorem for =g)

P=3Q
ET.PD/BT/\QD@)T

Proof
Whiteboard.

16/65

Lambda Calculus

Beta-Equality

Corollary
If P,Q € B-nfand P=43(Q), then P =, ().

Corollary
The relation =g is non-trivial (not all terms are /-convertible to each other).

Proof
Whiteboard.

17/65

Fixed-Point Combinators

Idea
For every term F' there is a term X such

FX =5 X.

The term X is a fixed-point of F'.

18/65

Fixed-Point Combinators

Theorem
VFIX.FX =5 X.

Lambda Calculus 19/65

Fixed-Point Combinators

Theorem
VFIX.FX =3 X.

Proof.
Let W = Az.F(xzx), and let X = WW. Then

X = (\z.F(zz))W
— F(WW)
=FX |

20/65

Lambda Calculus

Fixed-Point Combinators

Fixed-point combinator
A fixed-point combinator is any combinator Y such that YF =g F(YF), for all terms F.

Theorem (Turing)

The term Y = UU, where U = \uz.x(uuzx) is a fixed-point combinator.

Proof
Whiteboard.

Theorem (Curry and Rosenbloom)
The term Y = Af.VV, where V = A\z.f(zx) is a fixed-point combinator.

Proof
Whiteboard.

21/65

Fixed-Point Combinators

Corollary
For every term Z and n > 0, the equation

Y1 ... Yn =2

can be solved for z. That is, there is a term X such that

Xy1...yn =5 [X/z]Z.

Proof
X =Y(A\zyy ... yn.Z) (whiteboard).

22/65

Leftmost Reduction

Idea
Proving that a given term has no normal form.

Definition
A contraction in X is an order triple (X, R,Y) where R is an redex in X and Y is the result

of contracting R in X.

Notation
A contraction (X, R,Y) is denoted by X br Y.

23/65

Leftmost Reduction

Example
Two contractions in (Az.(Ay.yz)z)v.

(i) (Az.(Ay.yz)z)vg (A\y.yv)z, where R = (Az.(A\y.yz)z)v.
(i) (Ax.(A\y.yx)z)v g (Az.zx)v, where R = (Ay.yx)z.

Lambda Calculus 24/65

Leftmost Reduction

Definition
A reduction p is a finite or infinite sequence of contractions separated by a-conversions

XV1\>R1 Yi =a X2[>R2
Question

Given an initial term X, there is some way of choosing a reduction that will terminate if X has
a normal form?

25/65

Leftmost Reduction

Definition
A redex is outermost (or maximal) iff it is not contained in any other redex.

Definition
A (outermost) redex is the leftmost outermost redex (or leftmost maximal redex) iff it is
the leftmost of the outermost redexes.

Definition
A reduction has maximal length iff either it is infinite or its last term contains no redexes.

26/65

Leftmost Reduction

Definition
The leftmost reduction (or normal reduction) of a term X is a reduction

X1 >Ry X2 >R, X3 PR3 -

where
(i) Every R; is the leftmost outermost redex of Xj.

(i) The reduction has maximal length.

27/65

Leftmost Reduction

Example

The leftmost reduction for (Ay.a)S?, where 2 = (A\z.zz)(A\z.2x).

(Ay.a)Q2g a.

Lambda Calculus 28/65

Leftmost Reduction

Example
The leftmost reduction for X(Y Z), where X = Az.zz, Y = Ay.yy and Z = Az.zz.

X(YZ) b5 (YZ)(Y2)
b5 (22)(Y Z)

Lambda Calculus 29/65

Leftmost Reduction

Theorem (Standardization theorem (or leftmost reduction theorem))

If a term X has a normal form X™*, then the leftmost reduction of X is finite and ends at X™.

Lambda Calculus 30/65

| ambda Calculus and Inconsistencies

Lambda Calculus and Inconsistencies

Paradoxes
@ Curry's paradox (A-calculus + logic)

@ Rusell's paradox (A-calculus + set theory)

Lambda Calculus and Inconsistencies

32/65

Curry’s Paradox

Introduction

Informally, Curry's paradox is obtained in a deductive theory formed by A-calculus + logic
formulated by Church [,]

Notation
In our presentation of Curry paradox equality means 3-equality, that is, A = B := A =3 B.

Theorem (Curry's paradox)
Any proposition is probable in Church's theory

33/65

Curry’s Paradox

Proof (Rosser | , p. 340])

Suppose we have two familiar logical principles:

FPDOP
F(PD>(PD>Q)D(PDQ)

together with modus ponens (if P and P D @, then Q).

Let A be an arbitrary proposition. We construct a X such that
FX=XDA
To do this, we take F' = Az.z D A in the fixed-point theorem. By (8), we get

FXDX.

(10)

Continued on next slide

34/65

Curry’s Paradox

Proof (continuation).

Applying (10) to the second ® gives

FXDO(XDA).
By (9) and modus ponens, we get
FX DA
By (10) reversed, we get
FX.

By modus ponens and the last two formulas, we get

A

35/65

Curry’s Paradox

Church’'s theory

Adding to the set of A-terms a constant D, the sub-theory from Church's theory required for
proving Curry's paradox is defined by the following inference rules [Barendregt |, where T’
is a set of A-terms:

A+ B I '-A>B r-A SR
TFASB ~ T'-B
Fl_Arl_;:B subst

36/65

Curry’s Paradox

Proof (Barendregt [1)

Using the previous inference rules, we prove Curry's paradox. Let A be an arbitrary proposition

and let X = X D A by the fixed-point theorem.
Initially, we prove - X D A.

XFX X=XDA
XFXDA

subst

XFA
FXD>A

XEX

DE
DI

And then we prove - A.

FXDA XDA=X
FX>A FX
A ok

subst

37/65

Rusell's Paradox

See [Paulson 2000, § 4.6].

Lambda Calculus and Inconsistencies 38/65

Encoding Data in the Lambda Calculus

Encoding Data in the Lambda Calculus

Remark

From [Paulson 2000, Ch. 3].

Booleans

where

Encoding Data in the Lambda Calculus

true = Azy.x
false = Axy.y
if = Apzry.pry

if true M N =g M
if false M N =g N

40/65

Encoding Data in the Lambda Calculus

Ordered pairs

pair = Axyf.fxy
fst = Ap.ptrue
snd = Ap.pfalse

where

fst (pair M N) =g M
snd (pair M N) =g N

Encoding Data in the Lambda Calculus 41/65

Encoding Data in the Lambda Calculus

Natural numbers
Notation:
XY =X(X(...(XY)...)) ifn>1,
—_———
n'X's
X% =v.

The Church numerals:

Encoding Data in the Lambda Calculus 42/65

Encoding Data in the Lambda Calculus

Some operations

add = Amnfx.mf(nfz)
mult = Amnfr.m(nf)z

isZero = An.n(Ax.false) true
where

addmn=gm+n

multmn =gm x n

isZero0 =g true

isZeron + 1 =g false

Encoding Data in the Lambda Calculus 43/65

Recursion Using Fixed-Points

Example

Let Y be a fixed-point combinator. An informally example using the factorial
function [Peyton Jones 1987].

fac = An.ifn = Othen lelsen * fac (n — 1)
fac= An.(...fac...)
fac= (Afn.(...f...))fac

h=Afn.(...f...) -- not recursive!
fac = hfac -- facis a fixed-point of A!

fac=Yh

Encoding Data in the Lambda Calculus 44/65

Recursion Using Fixed-Points

Example (cont.)

facl=Yhl
=g h(Yh)1
=Mfn(..f..0))(Yh)1
>gifl =0thenlelsel* (Y h0)
>g 1 (Y hO)
=g 1% (h(Y h)O0)
=1x((Afn.(...f...))(Yh))
>3 1 (if0 =Othenlelsel * (Y h(—1)))
>gl*1
>g 1

Encoding Data in the Lambda Calculus 45/65

Representing the Computable Functions

Representability
Let ¢ be a partial function ¢ : N — N. A term X represents ¢ iff

o(my,...,my) =p= Xmi... My, =3P,

w(ma, ..., my,) does not exits = Xy ... 7, has no nf.

Example
The successor function succ(n) =n + 1 is represented by
succ = Anfz.f(nfx)

Theorem (Representation of Turing-computable functions)

In A-calculus every Turing-computable function can be represented by a combinator.

46/65

Encoding Data in the Lambda Calculus

Undecidability

Godel numbering

: Ad-terms —» N
Hay =2
#(\x;. M) = 3i57M
#(MN) = 7#M11#N

Notation: "M = #M

Theorem (Double fixed-point theorem)
VFIX.FrX7 =5 X.

Proof
Whiteboard.

Encoding Data in the Lambda Calculus 47/65

Undecidability

Theorem (Rice's theorem for the A-calculus)

Let A C A-terms such as A is non-trivial (i.e. A # (), A # A-terms). Suppose that A is closed
under =g (i.e. M € A, M =g N = N € A). Then A is no recursive, that is, #A = {#M |
M € A} is not recursive.

Proof
Whiteboard (see [Barendregt (1990) D).

Theorem
The set NF = {M | M has a normal form} is not recursive.

Proof.
The set NF is not trivial and it is closed under =4. [|

48/65

ISWIM

ISWIM: Lambda Calculus as a Programming Language

o ISWIM: If you See What | Mean
e Landin [1960]

ISWIM 50/65

ISWIM Features

Remark
This section is from [Paulson 2000, Ch. 3].

ISWIM 51/65

ISWIM Features

Remark
This section is from [Paulson 2000, Ch. 3].

Simple declaration
etz =MinN = (A\z.N)M

Example
o letn =0insuccn

o letm =0in(letn =Tinaddmmn)

ISWIM 52/65

ISWIM Features

Function declaration
let foq...xp =MinN = (Af.N)Axy...xx.M)

Example

letsuccn = Afz.f(nfx)insuccO

ISWIM 53/65

ISWIM Features

Recursive declaration

letrec fey...xp =MinN = (ALN)YAfxy...xp.M))
Example
letrec fac n = if (n ==0) 1 (n * fac(n — 1)) in fac 0

ISWIM 54/65

ISWIM Features

Pairs

(M, N) : pair constructor
fst,snd : projections
let \N(z,y).E = Az.(Azy.E)(fst z)(snd 2)

Example
let (z,y) = (2,3) inaddxzy

ISWIM 55/65

Formal Theories

The Formal Theory A3 of 3-Equality

Formulas
M = N, where M, N € \-terms.

Axiom-schemes

() Ae.M = Ny.Jy/z]M ify € FV(M),
(8) (wM)N = [N/z]M,
(p) M =M.

Formal Theories 57/65

The Formal Theory A3 of 3-Equality

Rules of inference

M=M M= M M=N
NM = Nar W e = e O N=a)
M M=N N=P
M=M_,) (7)

MN = M'N M=Pr

Formal Theories

58/65

The Formal Theory A3 of 3-Equality

Notation
If there is a deduction of B from the assumptions Aj,..., A, in A3 is denoted by

AB,Ay,..., A, F B.

Notation
If the formula B is a theorem in AS is denoted by

AGF B.

Remark

AS is an equational theory and it is a logic-free theory (there are not logical constants in its

formulae).

59/65

The Formal Theory A3 of 3-Equality

Example
Let M and N be two closed terms, then A5+ (Azy.x)MN = M.

Az.(Ay.z))M = [M/z]\y.x = \y.M)
(Ax.(A\y.x))MN = (\y.M)N (Ay.M)N = [N/y|M =M (r)
(Az.(Ay.x))MN = M

60/65

The Formal Theory A3 of 3-Equality

Theorem

M=4N & A3FM=N.

Formal Theories 61/65

The Formal Theory A3 of $-Reduction

Similar to the formal theory of S-equality, but:
(i) Formulas: M >g N.
(ii) To change ‘=" by >3"
(iii) Remove the rule (o).
Theorem
MDBN@)\,BFMbﬁN.

Remark

Formal theories for combinatory logic.

Remark

AB is not a first-order theory.

62/65

References

References

)

Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised
edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier
(cit. on p. 3).
Barendregt, Henk [1990] (1992). Functional Programming and Lambda Calculus. In: Handbook
of Theoretical Computer Science. Volume B. Formal Models and Semantics. Ed. by
van Leeuwen, J. Second impression. MIT Press. Chap. 7. DOI:

(cit. on p. 48).
— (2014). The Impact of the Lambda Calculus. (Slides). URL:

(visited on 12/06,/2019) (cit. on pp. 36, 37).

Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited
edition (cit. on p. 3).
Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2, pp. 346-366. DOTI: (cit. on p. 33).
— (1933). A Set of Postulates for the Foundation of Logic (Second Paper). Annals of
Mathematics 34.4, pp. 839-864. DOTI: (cit. on p. 33).

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
http://www.cs.ru.nl/~henk/CT271014.pdf
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968702

References

Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An
Introduction. Cambridge University Press (cit. on p. 3).
Landin, P. J. (1966). The Next 700 Programming Languages. Communications of the ACM 9.3,

pp. 157-166. DOT: (cit. on p. 50).
Paulson, Lawrence C. (2000). Foundations of Functional Programming. Lecture notes. URL:
(visited on 10/06/2020) (cit. on pp. 3, 38, 40, 51, 52).

Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages.
Series in Computer Sciences. Prentice-Hall International (cit. on p. 44).

Rosser, J. Barkley (1984). Highlights of the History of Lambda-Calculus. Annals of the History of
Computing 6.4, pp. 337-349. por: (cit. on p. 34).

https://doi.org/10.1145/365230.365257
http://www.cl.cam.ac.uk/~lp15/
https://doi.org/10.1109/MAHC.1984.10040

	Introduction
	Lambda Calculus
	Lambda Calculus and Inconsistencies
	Encoding Data in the Lambda Calculus
	ISWIM
	Formal Theories
	References

