Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2010-2

Bibliography

- Textbook: Hindley, J. Roger and Seldin, Jonathan P. [2008]. Lambda-Calculus and Combinators. An Introduction. Cambridge University Press.
- Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus. Revisited edition.
- Barendregt, H. P. [1981] [2004]. The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier.
- Paulson, Lawrence C. [2000]. Foundations of Functional Programming. Lecture notes. URL: http://www.cl.cam.ac.uk/~lp15/ [visited on 10/06/2020].

Introduction 3/65

Lambda Calculus

What is the Lambda Calculus?

Invented by Alonzo Church (around 1930s).

- The goal was to use it in the foundation of mathematics. Intended for studying functions and recursion.
- Computability model.
- Model of untyped functional programming languages.

Lambda Calculus 5/65

- ullet λ -calculus is a collection of several formal systems
- λ -notation
 - Anonymous functions
 - Currying

Lambda Calculus 6/65

Definition (λ -terms)

The set of λ -terms is inductively defined by

$$\begin{array}{c} v \in V \Rightarrow v \in \lambda\text{-terms} & \text{(atom)} \\ c \in C \Rightarrow c \in \lambda\text{-terms} & \text{(atom)} \\ M, N \in \lambda\text{-terms} \Rightarrow (MN) \in \lambda\text{-terms} & \text{(application)} \\ M \in \lambda\text{-terms}, x \in V \Rightarrow (\lambda x.M) \in \lambda\text{-terms} & \text{(abstraction)} \end{array}$$

where V/C is a set of variables/constants.

Lambda Calculus 7/65

Conventions and syntactic sugar

- ullet $M\equiv N$ means the syntactic identity
- Application associates to the left $MN_1N_2...N_k$ means $(...((MN_1)N_2)...N_k)$
- Application has higher precedence $\lambda x.PQ$ means $(\lambda x.(PQ))$
- $\lambda x_1 x_2 \dots x_n M$ means $(\lambda x_1.(\lambda x_2.(\dots(\lambda x_n.M)\dots)))$

Example

```
(\lambda xyz.xz(yz))uvw \equiv ((((\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))u)v)w).
```

Lambda Calculus 8/65

Term-Structure and Substitution

Substitution ([N/x]M)

The result of substituting N for every free occurrence of x in M, and changing bound variables to avoid clashes.

$$[N/x]x \equiv N;$$

$$[N/x]a \equiv a,$$
 for all atoms $a \not\equiv x;$ (2)
$$[N/x](PQ) \equiv ([N/x]P)([N/x]Q);$$
 (3)
$$[N/x](\lambda x.P) \equiv \lambda x.P;$$
 (4)
$$[N/x](\lambda y.P) \equiv \lambda y.P,$$
 $y \not\equiv x, x \not\in FV(P);$ (5)
$$[N/x](\lambda y.P) \equiv \lambda y.[N/x]P,$$
 $y \not\equiv x, x \in FV(P), y \not\in FV(N);$ (6)
$$[N/x](\lambda y.P) \equiv \lambda z.[N/x][z/y]P,$$
 $y \not\equiv x, x \in FV(P), y \in FV(N);$ (7)

where in the last equation, z is chosen to be a variable $\notin FV(NP)$.

Lambda Calculus 9/65

Term-Structure and Substitution

Example

$$[(\lambda y.vy)/x](y(\lambda v.xv)) \equiv y(\lambda z.(\lambda y.vy)z) \text{ (with } z \not\equiv v,y,x\text{)}.$$

Lambda Calculus 10/65

Term-Structure and Substitution

 α -conversion or changed of bound variables

Replace $\lambda x.M$ by $\lambda y.[y/x]M$ ($y \notin FV(M)$).

 α -congruence $(P \equiv_{\alpha} Q)$

P is changed to Q by a finite (perhaps empty) series of α -conversions.

Example

Whiteboard.

Theorem

The relation \equiv_{α} is an equivalence relation.

Lambda Calculus 11/65

 β -contraction $(\cdot \triangleright_{1\beta} \cdot)$

 $(\lambda x.M)N$: β -redex

[N/x]M: contractum

 $(\lambda x.M)N \triangleright_{1\beta} [N/x]M$

 $P \triangleright_{1\beta} Q$: Replace an occurrence of $(\lambda x.M)N$ in P by [N/x]M.

Example

Whiteboard.

Lambda Calculus 12/65

$$\beta$$
-reduction $(P \triangleright_{\beta} Q)$

P is changed to Q by a finite (perhaps empty) series of β -contractions and α -conversions.

Example

$$(\lambda x.(\lambda y.yx)z)v \triangleright_{\beta} zv.$$

Lambda Calculus 13/65

β -normal form

A term which contains no β -redex.

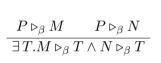
 β -nf: The set of all β -normal forms.

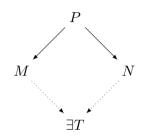
Example

Whiteboard.

Lambda Calculus 14/65

Theorem (The Church-Rosser theorem for \triangleright_{β} (the diamond property))





Corollary

If P has a β -normal form, it is unique modulo \equiv_{α} ; that is, if P has β -normal forms M and N, then $M \equiv_{\alpha} N$.

Proof

Whiteboard.

Lambda Calculus 15/65

Beta-Equality

$$\beta$$
-equality or β -convertibility $(P =_{\beta} Q)$

Exist P_0, \ldots, P_n such that

- $P_0 \equiv P$
- \bullet $P_n \equiv Q$
- $(\forall i \leq n-1)(P_i \triangleright_{1\beta} P_{i+1} \quad \lor \quad P_{i+1} \triangleright_{1\beta} P_i \quad \lor \quad P_i \equiv_{\alpha} P_{i+1})$

Theorem (Church-Rosser theorem for $=_{\beta}$)

$$P =_{\beta} Q$$

$$\exists T.P \triangleright_{\beta} T \land Q \triangleright_{\beta} T$$

Proof

Whiteboard.

Lambda Calculus 16/65

Beta-Equality

Corollary

If $P,Q\in\beta$ -nf and $P=_{\beta}Q$, then $P\equiv_{\alpha}Q$.

Corollary

The relation $=_{\beta}$ is non-trivial (not all terms are β -convertible to each other).

Proof

Whiteboard.

Lambda Calculus 17/65

Idea

For every term F there is a term X such

$$FX =_{\beta} X$$
.

The term X is a **fixed-point** of F.

Lambda Calculus 18/65

Theorem

 $\forall F \exists X. FX =_{\beta} X.$

Lambda Calculus 19/65

Theorem

$$\forall F \exists X. FX =_{\beta} X.$$

Proof.

Let $W \equiv \lambda x. F(xx)$, and let $X \equiv WW$. Then

$$X \equiv (\lambda x. F(xx))W$$
$$=_{\beta} F(WW)$$
$$\equiv FX$$

Lambda Calculus 20/65

Fixed-point combinator

A fixed-point combinator is any combinator Y such that $YF =_{\beta} F(YF)$, for all terms F.

Theorem (Turing)

The term $\mathbf{Y} \equiv UU$, where $U \equiv \lambda ux.x(uux)$ is a fixed-point combinator.

Proof

Whiteboard.

Theorem (Curry and Rosenbloom)

The term $Y \equiv \lambda f.VV$, where $V \equiv \lambda x.f(xx)$ is a fixed-point combinator.

Proof

Whiteboard.

Lambda Calculus 21/65

Corollary

For every term Z and $n \geq 0$, the equation

$$xy_1 \dots y_n = Z$$

can be solved for x. That is, there is a term X such that

$$Xy_1 \dots y_n =_{\beta} [X/x]Z.$$

Proof

$$X \equiv \mathbf{Y}(\lambda x y_1 \dots y_n.Z)$$
 (whiteboard).

Lambda Calculus 22/65

Idea

Proving that a given term has no normal form.

Definition

A **contraction** in X is an order triple $\langle X, R, Y \rangle$ where R is an redex in X and Y is the result of contracting R in X.

Notation

A contraction $\langle X, R, Y \rangle$ is denoted by $X \triangleright_R Y$.

Lambda Calculus 23/65

Example

Two contractions in $(\lambda x.(\lambda y.yx)z)v$.

- (i) $(\lambda x.(\lambda y.yx)z)v \triangleright_R (\lambda y.yv)z$, where $R \equiv (\lambda x.(\lambda y.yx)z)v$.
- (ii) $(\lambda x.(\lambda y.yx)z)v \triangleright_R (\lambda x.zx)v$, where $R \equiv (\lambda y.yx)z$.

Lambda Calculus 24/65

Definition

A **reduction** ρ is a finite or infinite sequence of contractions separated by α -conversions

$$X_1 \triangleright_{R_1} Y_1 \equiv_{\alpha} X_2 \triangleright_{R_2} \dots$$

Question

Given an initial term X, there is some way of choosing a reduction that will terminate if X has a normal form?

Lambda Calculus 25/65

Definition

A redex is **outermost** (or **maximal**) iff it is not contained in any other redex.

Definition

A (outermost) redex is the **leftmost outermost redex** (or **leftmost maximal redex**) iff it is the leftmost of the outermost redexes.

Definition

A reduction has maximal length iff either it is infinite or its last term contains no redexes.

Lambda Calculus 26/65

Definition

The **leftmost reduction** (or **normal reduction**) of a term X_1 is a reduction

$$X_1 \triangleright_{R_1} X_2 \triangleright_{R_2} X_3 \triangleright_{R_3} \dots$$

where

- (i) Every R_i is the leftmost outermost redex of X_i .
- (ii) The reduction has maximal length.

Lambda Calculus 27/65

Example

The leftmost reduction for $(\lambda y.a)\Omega$, where $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$.

 $(\lambda y.a)\Omega \triangleright_{\beta} a.$

Lambda Calculus 28/65

Example

The leftmost reduction for X(YZ), where $X \equiv \lambda x.xx$, $Y \equiv \lambda y.yy$ and $Z \equiv \lambda z.zz$.

$$\frac{X(YZ)}{\triangleright_{\beta} (\underline{YZ})(YZ)}$$
$$\triangleright_{\beta} (\underline{ZZ})(YZ)$$
$$\vdots$$

Lambda Calculus 29/65

Theorem (Standardization theorem (or leftmost reduction theorem))

If a term X has a normal form X^* , then the leftmost reduction of X is finite and ends at X^* .

Lambda Calculus 30/65

Lambda Calculus and Inconsistencies

Lambda Calculus and Inconsistencies

Paradoxes

- Curry's paradox (λ -calculus + logic)
- Rusell's paradox (λ -calculus + set theory)

Introduction

Informally, Curry's paradox is obtained in a deductive theory formed by λ -calculus + logic formulated by Church [1932, 1933].

Notation

In our presentation of Curry paradox equality means β -equality, that is, $A = B := A =_{\beta} B$.

Theorem (Curry's paradox)

Any proposition is probable in Church's theory

Proof (Rosser [1984, p. 340])

Suppose we have two familiar logical principles:

$$\vdash P \supset P$$
$$\vdash (P \supset (P \supset Q)) \supset (P \supset Q)$$

together with modus ponens (if P and $P \supset Q$, then Q).

Let A be an arbitrary proposition. We construct a X such that

$$\vdash X = X \supset A$$

(10)

(8)

To do this, we take $F = \lambda x.x \supset A$ in the fixed-point theorem. By (8), we get

$$\vdash X \supset X$$
.

Continued on next slide

Proof (continuation).

Applying (10) to the second Φ gives

$$\vdash X \supset (X \supset A).$$

By (9) and modus ponens, we get

$$\vdash X \supset A$$
.

By (10) reversed, we get

$$\vdash X$$
.

By modus ponens and the last two formulas, we get

$$\vdash A$$
.

Church's theory

Adding to the set of λ -terms a constant \supset , the sub-theory from Church's theory required for proving Curry's paradox is defined by the following inference rules [Barendregt 2014], where Γ is a set of λ -terms:

$$\overline{\Gamma, A \vdash A}$$
 hyp (if $A \in \Gamma$)

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset I$$

$$\frac{\Gamma \vdash A \supset B \qquad \Gamma \vdash A}{\Gamma \vdash B} \supset E$$

$$\frac{\Gamma \vdash A \qquad A = B}{\Gamma \vdash B} \text{ subst}$$

Curry's Paradox

Proof (Barendregt [2014])

Using the previous inference rules, we prove Curry's paradox. Let A be an arbitrary proposition and let $X=X\supset A$ by the fixed-point theorem.

Initially, we prove $\vdash X \supset A$.

$$\frac{X \vdash X \qquad X = X \supset A}{X \vdash X \supset A} \text{ subst} \qquad X \vdash X \\ \frac{X \vdash X \supset A}{\vdash X \supset A} \supset I$$

And then we prove $\vdash A$.

Rusell's Paradox

See [Paulson 2000, § 4.6].

Remark

From [Paulson 2000, Ch. 3].

Booleans

$$\begin{aligned} \mathsf{true} &\equiv \lambda xy.x \\ \mathsf{false} &\equiv \lambda xy.y \\ \mathsf{if} &\equiv \lambda pxy.pxy \end{aligned}$$

where

if true
$$M N =_{\beta} M$$

if false $M N =_{\beta} N$

Ordered pairs

$$\begin{aligned} \text{pair} &\equiv \lambda xyf.fxy\\ \text{fst} &\equiv \lambda p.p\,\text{true}\\ \text{snd} &= \lambda p.p\,\text{false} \end{aligned}$$

where

$$\operatorname{fst}\left(\operatorname{pair}M\ N\right) =_{\beta}M$$

$$\operatorname{snd}\left(\operatorname{pair}M\ N\right) =_{\beta}N$$

Natural numbers

Notation:

$$X^nY \equiv \underbrace{X(X(\ldots(X\,Y)\ldots))}_{n\ {}^\prime X^\prime {\rm s}} \ \ {\rm if} \ n \geq 1,$$

$$X^0Y \equiv Y.$$

The Church numerals:

$$\overline{n} \equiv \lambda f x. f^n x$$

Some operations

$$\begin{aligned} & \mathsf{add} \equiv \lambda mnfx.mf(nfx) \\ & \mathsf{mult} \equiv \lambda mnfx.m(nf)x \\ & \mathsf{isZero} \equiv \lambda n.n(\lambda x.\mathsf{false}) \, \mathsf{true} \end{aligned}$$

where

$$\operatorname{add} \overline{m}\, \overline{n} =_{\beta} \overline{m+n}$$

$$\operatorname{mult} \overline{m}\, \overline{n} =_{\beta} \overline{m\times n}$$

Recursion Using Fixed-Points

Example

Let Y be a fixed-point combinator. An informally example using the factorial function [Peyton Jones 1987].

```
fac \equiv \lambda n. if n = 0 then 1 else n * fac (n - 1)
fac \equiv \lambda n.(\dots fac \dots)
fac \equiv (\lambda f n.(\dots f \dots)) fac
  h \equiv \lambda f n.(\dots f \dots) -- not recursive!
fac \equiv h fac -- fac is a fixed-point of h!
fac = Y h
```

Recursion Using Fixed-Points

Example (cont.)

```
fac 1 \equiv Y h 1
         =_{\beta} h(Y h) 1
         \equiv (\lambda f n.(\dots f \dots))(Y h) 1
         \triangleright_{\beta} if 1 = 0 then 1 else 1 * (Y h 0)
         \triangleright_{\beta} 1 * (Y h 0)
         =_{\beta} 1 * (h(Y h) 0)
         \equiv 1 * ((\lambda f n.(\dots f \dots))(Y h)0)
         \triangleright_{\beta} 1 * (\text{if } 0 = 0 \text{ then } 1 \text{ else } 1 * (Y h (-1)))
         \triangleright_{\beta} 1 * 1
         \triangleright_{\beta} 1
```

Representing the Computable Functions

Representability

Let φ be a partial function $\varphi: \mathbb{N}^n \to \mathbb{N}$. A term X represents φ iff

$$\varphi(m_1,\ldots,m_n)=p\Rightarrow X\overline{m_1}\ldots\overline{m_n}=_\beta\overline{p},$$

$$\varphi(m_1,\ldots,m_n) \text{ does not exits }\Rightarrow X\overline{m_1}\ldots\overline{m_n} \text{ has no nf.}$$

Example

The successor function $\operatorname{succ}(n)=n+1$ is represented by

$$\mathsf{succ} \equiv \lambda n f x. f(n f x)$$

Theorem (Representation of Turing-computable functions)

In λ -calculus every Turing-computable function can be represented by a combinator.

Undecidability

Gödel numbering

$$\#: \lambda ext{-terms}
ightarrow \mathbb{N}$$
 $\#x_i = 2^i$ $\#(\lambda x_i.M) = 3^i 5^{\#M}$ $\#(MN) = 7^{\#M} 11^{\#N}$

Notation:
$$\lceil M \rceil = \overline{\#M}$$

Theorem (Double fixed-point theorem)

$$\forall F \exists X. F \vdash X \urcorner =_{\beta} X.$$

Proof

Whiteboard.

Undecidability

Theorem (Rice's theorem for the λ -calculus)

Let $A \subset \lambda$ -terms such as A is non-trivial (i.e. $A \neq \emptyset$, $A \neq \lambda$ -terms). Suppose that A is closed under $=_{\beta}$ (i.e. $M \in A, M =_{\beta} N \Rightarrow N \in A$). Then A is no recursive, that is, $\#A = \{\#M \mid M \in A\}$ is not recursive.

Proof

Whiteboard (see [Barendregt (1990) 1992]).

Theorem

The set $NF = \{M \mid M \text{ has a normal form}\}\$ is not recursive.

Proof.

The set NF is not trivial and it is closed under $=_{\beta}$.

ISWIM: Lambda Calculus as a Programming Language

- ISWIM: If you See What I Mean
- Landin [1966]

ISWIM 50/65

Remark

This section is from [Paulson 2000, Ch. 3].

ISWIM 51/65

Remark

This section is from [Paulson 2000, Ch. 3].

Simple declaration

$$let x = M in N \equiv (\lambda x. N) M$$

Example

- let $n = \overline{0}$ in succ n
- let $m = \overline{0}$ in (let $n = \overline{1}$ in add m n)

ISWIM 52/65

Function declaration

$$\det f x_1 \dots x_k = M \text{ in } N \quad \equiv \quad (\lambda f.N)(\lambda x_1 \dots x_k.M)$$

Example

 $\mathsf{let}\,\mathsf{succ}\,n = \lambda fx. f(nfx)\,\mathsf{in}\,\mathsf{succ}\,\overline{0}$

ISWIM 53/65

Recursive declaration

$$\mathsf{letrec}\, fx_1 \dots x_k = M \,\mathsf{in}\, N \quad \equiv \quad (\lambda f.N)(\mathsf{Y}(\lambda fx_1 \dots x_k.M))$$

Example

letrec fac n = if(n == 0) 1 (n * fac(n - 1)) in fac 0

ISWIM 54/65

Pairs

```
(M,N): pair constructor fst, snd: projections let \lambda(x,y).E \equiv \lambda z.(\lambda xy.E)(fst z)(snd z)
```

Example

 $\mathsf{let}\,(x,y)=(\overline{2},\overline{3})\,\mathsf{in}\,\mathsf{add}\,x\,y$

ISWIM 55/65

Formal Theories

Formulas

M=N, where $M,N\in\lambda$ -terms.

Axiom-schemes

- $(\alpha) \quad \lambda x. M = \lambda y. [y/x] M \quad \text{if } y \in \mathrm{FV}(M),$
- $(\beta) \quad (\lambda x.M)N = [N/x]M,$
- (ρ) M=M.

Formal Theories 57/65

Rules of inference

$$\frac{M = M'}{NM = NM'}(\mu) \qquad \frac{M = M'}{\lambda x.M = \lambda x.M'}(\xi) \qquad \frac{M = N}{N = M}(\sigma)$$

$$\frac{M = M'}{MN = M'N}(\nu) \qquad \frac{M = N \quad N = P}{M = P}(\tau)$$

Formal Theories 58/65

Notation

If there is a deduction of B from the assumptions A_1, \ldots, A_n in $\lambda \beta$ is denoted by

$$\lambda \beta, A_1, \ldots, A_n \vdash B.$$

Notation

If the formula B is a theorem in $\lambda\beta$ is denoted by

$$\lambda\beta \vdash B$$
.

Remark

 $\lambda\beta$ is an equational theory and it is a logic-free theory (there are not logical constants in its formulae).

Formal Theories 59/65

Example

Let M and N be two closed terms, then $\lambda \beta \vdash (\lambda xy.x)MN = M$.

$$\frac{(\lambda x.(\lambda y.x))M = [M/x]\lambda y.x \equiv \lambda y.M}{(\lambda x.(\lambda y.x))MN = (\lambda y.M)N} (\nu) \qquad (\lambda y.M)N = [N/y]M \equiv M}{(\lambda x.(\lambda y.x))MN = M} (\tau)$$

Formal Theories 60/65

Theorem

$$M =_{\beta} N \Leftrightarrow \lambda \beta \vdash M = N.$$

Formal Theories 61/65

The Formal Theory $\lambda\beta$ of β -Reduction

Similar to the formal theory of β -equality, but:

- (i) Formulas: $M \triangleright_{\beta} N$.
- (ii) To change '=' by ' \triangleright_{β} '.
- (iii) Remove the rule (σ) .

Theorem

$$M \triangleright_{\beta} N \Leftrightarrow \lambda \beta \vdash M \triangleright_{\beta} N.$$

Remark

Formal theories for combinatory logic.

Remark

 $\lambda\beta$ is not a first-order theory.

Formal Theories 62/65

References

References

- Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on p. 3).
 - Barendregt, Henk [1990] (1992). Functional Programming and Lambda Calculus. In: Handbook of Theoretical Computer Science. Volume B. Formal Models and Semantics. Ed. by van Leeuwen, J. Second impression. MIT Press. Chap. 7. DOI: 10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 48).
- (2014). The Impact of the Lambda Calculus. (Slides). URL: http://www.cs.ru.nl/~henk/CT271014.pdf (visited on 12/06/2019) (cit. on pp. 36, 37).
- Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited edition (cit. on p. 3).
- Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33.2. pp. 346–366. DOI: 10.2307/1968337 (cit. on p. 33).
 - (1933). A Set of Postulates for the Foundation of Logic (Second Paper). Annals of Mathematics 34.4, pp. 839–864. DOI: 10.2307/1968702 (cit. on p. 33).

References

- Hind
 - Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Introduction. Cambridge University Press (cit. on p. 3).
 - Landin, P. J. (1966). The Next 700 Programming Languages. Communications of the ACM 9.3, pp. 157–166. DOI: 10.1145/365230.365257 (cit. on p. 50).
- Paulson, Lawrence C. (2000). Foundations of Functional Programming. Lecture notes. URL: http://www.cl.cam.ac.uk/~lp15/ (visited on 10/06/2020) (cit. on pp. 3, 38, 40, 51, 52).
- Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages. Series in Computer Sciences. Prentice-Hall International (cit. on p. 44).
- Rosser, J. Barkley (1984). Highlights of the History of Lambda-Calculus. Annals of the History of Computing 6.4, pp. 337–349. DOI: 10.1109/MAHC.1984.10040 (cit. on p. 34).