
Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2010-2

Introduction

Bibliography

Textbook: Hindley, J. Roger and Seldin, Jonathan P. [2008]. Lambda-Calculus and
Combinators. An Introduction. Cambridge University Press.
Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus.
Revisited edition.
Barendregt, H. P. [1981] [2004]. The Lambda Calculus. Its Syntax and Semantics.
Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of
Mathematics. Elsevier.
Paulson, Lawrence C. [2000]. Foundations of Functional Programming. Lecture notes.
url: http://www.cl.cam.ac.uk/~lp15/ [visited on 10/06/2020].

Introduction 3/65

http://www.cl.cam.ac.uk/~lp15/

Lambda Calculus

What is the Lambda Calculus?

Invented by Alonzo Church (around 1930s).

The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.
Computability model.
Model of untyped functional programming languages.

Lambda Calculus 5/65

Introduction

λ-calculus is a collection of several formal systems
λ-notation

Anonymous functions
Currying

Lambda Calculus 6/65

Introduction
Definition (λ-terms)
The set of λ-terms is inductively defined by

v ∈ V ⇒ v ∈ λ-terms (atom)
c ∈ C ⇒ c ∈ λ-terms (atom)

M, N ∈ λ-terms ⇒ (MN) ∈ λ-terms (application)
M ∈ λ-terms, x ∈ V ⇒ (λx.M) ∈ λ-terms (abstraction)

where V/C is a set of variables/constants.

Lambda Calculus 7/65

Introduction
Conventions and syntactic sugar

M ≡ N means the syntactic identity
Application associates to the left
MN1N2 . . . Nk means (...((MN1)N2)...Nk)
Application has higher precedence
λx.PQ means (λx.(PQ))
λx1x2 . . . xn.M means (λx1.(λx2.(. . . (λxn.M) . . .)))

Example
(λxyz.xz(yz))uvw ≡ ((((λx.(λy.(λz.((xz)(yz)))))u)v)w).

Lambda Calculus 8/65

Term-Structure and Substitution
Substitution ([N/x]M)
The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes.

[N/x]x ≡ N ; (1)
[N/x]a ≡ a, for all atoms a ̸≡ x; (2)
[N/x](PQ) ≡ ([N/x]P)([N/x]Q); (3)
[N/x](λx.P) ≡ λx.P ; (4)
[N/x](λy.P) ≡ λy.P, y ̸≡ x, x ̸∈ FV(P); (5)
[N/x](λy.P) ≡ λy.[N/x]P, y ̸≡ x, x ∈ FV(P), y ̸∈ FV(N); (6)
[N/x](λy.P) ≡ λz.[N/x][z/y]P, y ̸≡ x, x ∈ FV(P), y ∈ FV(N); (7)

where in the last equation, z is chosen to be a variable ̸∈ FV(NP).

Lambda Calculus 9/65

Term-Structure and Substitution
Example
[(λy.vy)/x](y(λv.xv)) ≡ y(λz.(λy.vy)z) (with z ̸≡ v, y, x).

Lambda Calculus 10/65

Term-Structure and Substitution
α-conversion or changed of bound variables
Replace λx.M by λy.[y/x]M (y ̸∈ FV(M)).

α-congruence (P ≡α Q)
P is changed to Q by a finite (perhaps empty) series of α-conversions.

Example
Whiteboard.

Theorem
The relation ≡α is an equivalence relation.

Lambda Calculus 11/65

Beta-Reduction
β-contraction (· ▷1β ·)
(λx.M)N : β-redex

[N/x]M : contractum

(λx.M)N ▷1β [N/x]M

P ▷1β Q: Replace an occurrence of (λx.M)N in P by [N/x]M .

Example
Whiteboard.

Lambda Calculus 12/65

Beta-Reduction
β-reduction (P ▷β Q)
P is changed to Q by a finite (perhaps empty) series of β-contractions and α-conversions.

Example
(λx.(λy.yx)z)v ▷β zv.

Lambda Calculus 13/65

Beta-Reduction
β-normal form
A term which contains no β-redex.

β-nf: The set of all β-normal forms.

Example
Whiteboard.

Lambda Calculus 14/65

Beta-Reduction

Theorem (The Church-Rosser theorem for ▷β (the diamond property))

P ▷β M P ▷β N

∃ T.M ▷β T ∧ N ▷β T

P

M N

∃T

Corollary
If P has a β-normal form, it is unique modulo ≡α; that is, if P has β-normal forms M and N ,
then M ≡α N .

Proof
Whiteboard.

Lambda Calculus 15/65

Beta-Equality
β-equality or β-convertibility (P =β Q)
Exist P0, . . . , Pn such that

P0 ≡ P

Pn ≡ Q

(∀i ≤ n − 1)(Pi ▷1β Pi+1 ∨ Pi+1 ▷1β Pi ∨ Pi ≡α Pi+1)

Theorem (Church-Rosser theorem for =β)

P =β Q

∃ T.P ▷β T ∧ Q ▷β T

Proof
Whiteboard.

Lambda Calculus 16/65

Beta-Equality
Corollary
If P, Q ∈ β-nf and P =β Q, then P ≡α Q.

Corollary
The relation =β is non-trivial (not all terms are β-convertible to each other).

Proof
Whiteboard.

Lambda Calculus 17/65

Fixed-Point Combinators
Idea
For every term F there is a term X such

FX =β X.

The term X is a fixed-point of F .

Lambda Calculus 18/65

Fixed-Point Combinators
Theorem
∀F∃X.FX =β X.

Proof.
Let W ≡ λx.F (xx), and let X ≡ WW . Then

X ≡ (λx.F (xx))W
=β F (WW)
≡ FX

Lambda Calculus 19/65

Fixed-Point Combinators
Theorem
∀F∃X.FX =β X.

Proof.
Let W ≡ λx.F (xx), and let X ≡ WW . Then

X ≡ (λx.F (xx))W
=β F (WW)
≡ FX

Lambda Calculus 20/65

Fixed-Point Combinators
Fixed-point combinator
A fixed-point combinator is any combinator Y such that YF =β F (YF), for all terms F .

Theorem (Turing)
The term Y ≡ UU , where U ≡ λux.x(uux) is a fixed-point combinator.

Proof
Whiteboard.

Theorem (Curry and Rosenbloom)
The term Y ≡ λf.V V , where V ≡ λx.f(xx) is a fixed-point combinator.

Proof
Whiteboard.

Lambda Calculus 21/65

Fixed-Point Combinators
Corollary
For every term Z and n ≥ 0, the equation

xy1 . . . yn = Z

can be solved for x. That is, there is a term X such that

Xy1 . . . yn =β [X/x]Z.

Proof
X ≡ Y(λxy1 . . . yn.Z) (whiteboard).

Lambda Calculus 22/65

Leftmost Reduction
Idea
Proving that a given term has no normal form.

Definition
A contraction in X is an order triple ⟨X, R, Y ⟩ where R is an redex in X and Y is the result
of contracting R in X.

Notation
A contraction ⟨X, R, Y ⟩ is denoted by X ▷R Y .

Lambda Calculus 23/65

Leftmost Reduction
Example
Two contractions in (λx.(λy.yx)z)v.
(i) (λx.(λy.yx)z)v ▷R (λy.yv)z, where R ≡ (λx.(λy.yx)z)v.
(ii) (λx.(λy.yx)z)v ▷R (λx.zx)v, where R ≡ (λy.yx)z.

Lambda Calculus 24/65

Leftmost Reduction
Definition
A reduction ρ is a finite or infinite sequence of contractions separated by α-conversions

X1 ▷R1 Y1 ≡α X2 ▷R2 . . .

Question
Given an initial term X, there is some way of choosing a reduction that will terminate if X has
a normal form?

Lambda Calculus 25/65

Leftmost Reduction
Definition
A redex is outermost (or maximal) iff it is not contained in any other redex.

Definition
A (outermost) redex is the leftmost outermost redex (or leftmost maximal redex) iff it is
the leftmost of the outermost redexes.

Definition
A reduction has maximal length iff either it is infinite or its last term contains no redexes.

Lambda Calculus 26/65

Leftmost Reduction
Definition
The leftmost reduction (or normal reduction) of a term X1 is a reduction

X1 ▷R1 X2 ▷R2 X3 ▷R3 . . .

where
(i) Every Ri is the leftmost outermost redex of Xi.
(ii) The reduction has maximal length.

Lambda Calculus 27/65

Leftmost Reduction
Example
The leftmost reduction for (λy.a)Ω, where Ω ≡ (λx.xx)(λx.xx).

(λy.a)Ω ▷β a.

Lambda Calculus 28/65

Leftmost Reduction
Example
The leftmost reduction for X(Y Z), where X ≡ λx.xx, Y ≡ λy.yy and Z ≡ λz.zz.

X(Y Z) ▷β (Y Z)(Y Z)
▷β (ZZ)(Y Z)
...

Lambda Calculus 29/65

Leftmost Reduction
Theorem (Standardization theorem (or leftmost reduction theorem))
If a term X has a normal form X∗, then the leftmost reduction of X is finite and ends at X∗.

Lambda Calculus 30/65

Lambda Calculus and Inconsistencies

Lambda Calculus and Inconsistencies
Paradoxes

Curry’s paradox (λ-calculus + logic)
Rusell’s paradox (λ-calculus + set theory)

Lambda Calculus and Inconsistencies 32/65

Curry’s Paradox
Introduction
Informally, Curry’s paradox is obtained in a deductive theory formed by λ-calculus + logic
formulated by Church [1932, 1933].

Notation
In our presentation of Curry paradox equality means β-equality, that is, A = B := A =β B.

Theorem (Curry’s paradox)
Any proposition is probable in Church’s theory

Lambda Calculus and Inconsistencies 33/65

Curry’s Paradox

Proof (Rosser [1984, p. 340])
Suppose we have two familiar logical principles:

⊢ P ⊃ P (8)
⊢ (P ⊃ (P ⊃ Q)) ⊃ (P ⊃ Q) (9)

together with modus ponens (if P and P ⊃ Q, then Q).

Let A be an arbitrary proposition. We construct a X such that

⊢ X = X ⊃ A (10)

To do this, we take F = λx.x ⊃ A in the fixed-point theorem. By (8), we get

⊢ X ⊃ X.

Continued on next slide
Lambda Calculus and Inconsistencies 34/65

Curry’s Paradox
Proof (continuation).
Applying (10) to the second Φ gives

⊢ X ⊃ (X ⊃ A).

By (9) and modus ponens, we get
⊢ X ⊃ A.

By (10) reversed, we get
⊢ X.

By modus ponens and the last two formulas, we get

⊢ A.

Lambda Calculus and Inconsistencies 35/65

Curry’s Paradox
Church’s theory
Adding to the set of λ-terms a constant ⊃, the sub-theory from Church’s theory required for
proving Curry’s paradox is defined by the following inference rules [Barendregt 2014], where Γ
is a set of λ-terms:

hyp (if A ∈ Γ)Γ, A ⊢ A

Γ, A ⊢ B
⊃IΓ ⊢ A ⊃ B

Γ ⊢ A ⊃ B Γ ⊢ A ⊃EΓ ⊢ B

Γ ⊢ A A = B substΓ ⊢ B

Lambda Calculus and Inconsistencies 36/65

Curry’s Paradox
Proof (Barendregt [2014])
Using the previous inference rules, we prove Curry’s paradox. Let A be an arbitrary proposition
and let X = X ⊃ A by the fixed-point theorem.

Initially, we prove ⊢ X ⊃ A.

X ⊢ X X = X ⊃ A subst
X ⊢ X ⊃ A X ⊢ X ⊃E

X ⊢ A ⊃I⊢ X ⊃ A

And then we prove ⊢ A.

⊢ X ⊃ A
⊢ X ⊃ A X ⊃ A = X subst⊢ X ⊃E⊢ A

Lambda Calculus and Inconsistencies 37/65

Rusell’s Paradox

See [Paulson 2000, § 4.6].

Lambda Calculus and Inconsistencies 38/65

Encoding Data in the Lambda Calculus

Encoding Data in the Lambda Calculus
Remark
From [Paulson 2000, Ch. 3].

Booleans

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

where

if true M N =β M

if false M N =β N

Encoding Data in the Lambda Calculus 40/65

Encoding Data in the Lambda Calculus
Ordered pairs

pair ≡ λxyf.fxy

fst ≡ λp.p true
snd = λp.p false

where

fst (pair M N) =β M

snd (pair M N) =β N

Encoding Data in the Lambda Calculus 41/65

Encoding Data in the Lambda Calculus
Natural numbers
Notation:

XnY ≡ X(X(. . . (X︸ ︷︷ ︸
n ‘X’s

Y) . . .)) if n ≥ 1,

X0Y ≡ Y.

The Church numerals:
n ≡ λfx.fnx

Encoding Data in the Lambda Calculus 42/65

Encoding Data in the Lambda Calculus
Some operations

add ≡ λmnfx.mf(nfx)
mult ≡ λmnfx.m(nf)x

isZero ≡ λn.n(λx.false) true

where

add m n =β m + n

mult m n =β m × n

isZero 0 =β true
isZero n + 1 =β false

Encoding Data in the Lambda Calculus 43/65

Recursion Using Fixed-Points
Example
Let Y be a fixed-point combinator. An informally example using the factorial
function [Peyton Jones 1987].

fac ≡ λn.if n = 0 then 1 else n ∗ fac (n − 1)
fac ≡ λn.(. . . fac . . .)
fac ≡ (λfn.(. . . f . . .)) fac

h ≡ λfn.(. . . f . . .) - - not recursive!
fac ≡ h fac - - fac is a fixed-point of h!

fac ≡ Y h

Encoding Data in the Lambda Calculus 44/65

Recursion Using Fixed-Points
Example (cont.)

fac 1 ≡ Y h 1
=β h(Y h) 1
≡ (λfn.(. . . f . . .))(Y h) 1
▷β if 1 = 0 then 1 else 1 ∗ (Y h 0)
▷β 1 ∗ (Y h 0)
=β 1 ∗ (h(Y h) 0)
≡ 1 ∗ ((λfn.(. . . f . . .))(Y h)0)
▷β 1 ∗ (if 0 = 0 then 1 else 1 ∗ (Y h (−1)))
▷β 1 ∗ 1
▷β 1

Encoding Data in the Lambda Calculus 45/65

Representing the Computable Functions
Representability
Let φ be a partial function φ : Nn → N. A term X represents φ iff

φ(m1, . . . , mn) = p ⇒ Xm1 . . . mn =β p,

φ(m1, . . . , mn) does not exits ⇒ Xm1 . . . mn has no nf.

Example
The successor function succ(n) = n + 1 is represented by

succ ≡ λnfx.f(nfx)

Theorem (Representation of Turing-computable functions)
In λ-calculus every Turing-computable function can be represented by a combinator.

Encoding Data in the Lambda Calculus 46/65

Undecidability
Gödel numbering

: λ-terms → N
#xi = 2i

#(λxi.M) = 3i5#M

#(MN) = 7#M 11#N

Notation: ⌜M⌝ = #M

Theorem (Double fixed-point theorem)
∀F∃X.F⌜X⌝ =β X.

Proof
Whiteboard.

Encoding Data in the Lambda Calculus 47/65

Undecidability
Theorem (Rice’s theorem for the λ-calculus)
Let A ⊂ λ-terms such as A is non-trivial (i.e. A ̸= ∅, A ̸= λ-terms). Suppose that A is closed
under =β (i.e. M ∈ A, M =β N ⇒ N ∈ A). Then A is no recursive, that is, #A = {#M |
M ∈ A} is not recursive.

Proof
Whiteboard (see [Barendregt (1990) 1992]).

Theorem
The set NF = {M | M has a normal form} is not recursive.

Proof.
The set NF is not trivial and it is closed under =β.

Encoding Data in the Lambda Calculus 48/65

ISWIM

ISWIM: Lambda Calculus as a Programming Language

ISWIM: If you See What I Mean
Landin [1966]

ISWIM 50/65

ISWIM Features
Remark
This section is from [Paulson 2000, Ch. 3].

Simple declaration
let x = M in N ≡ (λx.N)M

Example
let n = 0 in succ n

let m = 0 in (let n = 1 in add m n)

ISWIM 51/65

ISWIM Features
Remark
This section is from [Paulson 2000, Ch. 3].

Simple declaration
let x = M in N ≡ (λx.N)M

Example
let n = 0 in succ n

let m = 0 in (let n = 1 in add m n)

ISWIM 52/65

ISWIM Features
Function declaration
let fx1 . . . xk = M in N ≡ (λf.N)(λx1 . . . xk.M)

Example
let succ n = λfx.f(nfx) in succ 0

ISWIM 53/65

ISWIM Features
Recursive declaration
letrec fx1 . . . xk = M in N ≡ (λf.N)(Y(λfx1 . . . xk.M))

Example
letrec fac n = if (n == 0) 1 (n ∗ fac(n − 1)) in fac 0

ISWIM 54/65

ISWIM Features
Pairs
(M, N) : pair constructor
fst, snd : projections
let λ(x, y).E ≡ λz.(λxy.E)(fst z)(snd z)

Example
let (x, y) = (2, 3) in add x y

ISWIM 55/65

Formal Theories

The Formal Theory λβ of β-Equality
Formulas
M = N , where M, N ∈ λ-terms.

Axiom-schemes

(α) λx.M = λy.[y/x]M if y ∈ FV(M),
(β) (λx.M)N = [N/x]M,

(ρ) M = M.

Formal Theories 57/65

The Formal Theory λβ of β-Equality
Rules of inference

M = M ′
(µ)

NM = NM ′

M = M ′
(ν)

MN = M ′N

M = M ′
(ξ)

λx.M = λx.M ′

M = N N = P (τ)
M = P

M = N (σ)
N = M

Formal Theories 58/65

The Formal Theory λβ of β-Equality
Notation
If there is a deduction of B from the assumptions A1, . . . , An in λβ is denoted by

λβ, A1, . . . , An ⊢ B.

Notation
If the formula B is a theorem in λβ is denoted by

λβ ⊢ B.

Remark
λβ is an equational theory and it is a logic-free theory (there are not logical constants in its
formulae).

Formal Theories 59/65

The Formal Theory λβ of β-Equality
Example
Let M and N be two closed terms, then λβ ⊢ (λxy.x)MN = M .

(λx.(λy.x))M = [M/x]λy.x ≡ λy.M
(ν)

(λx.(λy.x))MN = (λy.M)N (λy.M)N = [N/y]M ≡ M
(τ)

(λx.(λy.x))MN = M

Formal Theories 60/65

The Formal Theory λβ of β-Equality
Theorem

M =β N ⇔ λβ ⊢ M = N.

Formal Theories 61/65

The Formal Theory λβ of β-Reduction

Similar to the formal theory of β-equality, but:
(i) Formulas: M ▷β N .
(ii) To change ‘=’ by ‘▷β’.
(iii) Remove the rule (σ).

Theorem

M ▷β N ⇔ λβ ⊢ M ▷β N.

Remark
Formal theories for combinatory logic.

Remark
λβ is not a first-order theory.

Formal Theories 62/65

References

References
Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised
edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier
(cit. on p. 3).
Barendregt, Henk [1990] (1992). Functional Programming and Lambda Calculus. In: Handbook
of Theoretical Computer Science. Volume B. Formal Models and Semantics. Ed. by
van Leeuwen, J. Second impression. MIT Press. Chap. 7. doi:
10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 48).
— (2014). The Impact of the Lambda Calculus. (Slides). url:
http://www.cs.ru.nl/~henk/CT271014.pdf (visited on 12/06/2019) (cit. on pp. 36, 37).
Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited
edition (cit. on p. 3).
Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2, pp. 346–366. doi: 10.2307/1968337 (cit. on p. 33).
— (1933). A Set of Postulates for the Foundation of Logic (Second Paper). Annals of
Mathematics 34.4, pp. 839–864. doi: 10.2307/1968702 (cit. on p. 33).

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
http://www.cs.ru.nl/~henk/CT271014.pdf
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968702

References
Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An
Introduction. Cambridge University Press (cit. on p. 3).
Landin, P. J. (1966). The Next 700 Programming Languages. Communications of the ACM 9.3,
pp. 157–166. doi: 10.1145/365230.365257 (cit. on p. 50).
Paulson, Lawrence C. (2000). Foundations of Functional Programming. Lecture notes. url:
http://www.cl.cam.ac.uk/~lp15/ (visited on 10/06/2020) (cit. on pp. 3, 38, 40, 51, 52).
Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages.
Series in Computer Sciences. Prentice-Hall International (cit. on p. 44).
Rosser, J. Barkley (1984). Highlights of the History of Lambda-Calculus. Annals of the History of
Computing 6.4, pp. 337–349. doi: 10.1109/MAHC.1984.10040 (cit. on p. 34).

https://doi.org/10.1145/365230.365257
http://www.cl.cam.ac.uk/~lp15/
https://doi.org/10.1109/MAHC.1984.10040

	Introduction
	Lambda Calculus
	Lambda Calculus and Inconsistencies
	Encoding Data in the Lambda Calculus
	ISWIM
	Formal Theories
	References

