Fundamentos de computación cuántica

Andrés Sicard Ramírez

Mario Elkin Vélez Ruíz

Juan Fernando Ospina Giraldo

Luis Fernando Moreno (Grupo de Lógica y Computación. Universidad EAFIT,

Medellín)

{asicard, mvelez, jospina, lmorenos}@eafit.edu.co

Cursillo en el X Encuentro ERM

Universidad de Medellín

Julio 12–16, 2004

- 1. Introducción a la computación cuántica
- 2. Preliminares (matemáticos, físicos, informáticos)
- 3. Circuitos cuánticos
- 4. Algoritmos cuánticos (Deutsch, Deutsch-Jozsa, Shor)
- 5. Simuladores
- 6. Realización física

Recursos bibliográficos (introductorios)

- Texto guía: Isaac L. Chuang y Michael A. Nielsen.
 Quantum computation and quantum information.
 Cambridge: Cambridge University Press, 2000.
- N. David Mermin. *From cbits to qubits: teaching computer scientists quantum mechanics*. Eprint: arXiv.org/abs/quant-ph/0207118.
- Eleanor Rieffel y Wolfgang Polak, An introduction to quantum computing for non-physicists. Eprint: arXiv.org/abs/quant-ph/9809016.
- Dorit Aharonov. *Quantum computation*. Eprint: arXiv.org/abs/quant-ph/9812037.

Recursos Internet

- Servidor de los Alamos (arxiv.org/) (xxx.lanl.gov).
- Virtual Journal of Quantum Computation (www.vjquantuminfo.org/).
- Artículos clásicos (pm1.bu.edu/~tt/qcl.html).
- Centre for Quantum Computation Oxford (www.qubit.org/)
- Simuladores

www.vcpc.univie.ac.at/~ian/hotlist/qc/programming.shtml)

Introducción a la computación cuántica

- Alan Mathison Turing (1936): Máquina de Turing
- K. de Leeuw, E. F. Moore, C. E. Shannon y N. Shapiro (1956): Computación probabilista.
- Charles H. Bennett (1973): Computación reversible.

Compuerta no reversible:

Compuerta reversible:

 Edward Fredkin y Tommaso Toffoli (1982): Compuertas universales reversibles.

 $z \oplus (x \land y) = \begin{cases} x \land y & \text{ssi } z = 0 \text{ (compuerta and)}, \\ x \oplus z & \text{ssi } y = 1 \text{ (compuerta xor)}, \\ \neg z & \text{ssi } x = y = 1 \text{ (compuerta not)}, \\ z & \text{ssi } x = 0; y = 1 \text{ (compuerta identidad)}. \end{cases}$

- Richard Feynman (1982, 1985): Computación mecánico-cuántica.
- David Deutsch (1985): Máquinas de Turing cuánticas.

 David Deutsch (1989): Circuitos cuánticos. Intercambio de qubits:

 Peter Shor (1994): Algoritmo para factorizar un número en sus factores primos de complejidad temporal polinomial

n

Algoritmo de Shor vs. algoritmo clásico

Número de dígi- tos	Algoritmo clásico	Algoritmo de Shor
129	1.85 años	45.9 minutos
250	2.1×10^6 años	3.4 horas
1000	4.5×10^{25} años	3.07 días

- Lov K. Grover (1996): Algoritmo de busqueda en una base de datos desorganizada.
- Implementación
 - 1998: 2-qubit (University of California Berkeley)
 - 1999: 3-qubit (IBM-Almaden)
 - 2000: 5-qubit (IBM-Almaden, Los Alamos)
 - 2001: 7-qubit (IBM-Almaden)

Simuladores

- Bernhard Ömer (1994): QCL: A Programming Language for Quantum Computers (para Linux).
- Colin P. Williams y Scott H. Clearwater (1997): Simulador implementado en *MATHEMATICA*TM.

Álgebra líneal

Espacios vectoriales y operadores líneales Representaciones matriciales y espectros Espacios y operadores unitarios

• Álgebra multilineal

Producto tensorial de espacios vectoriales Producto tensorial de operadores lineales

Análisis líneal

Funciones de operadores líneales Ecuaciones de evolución Espacios de Hilbert y álgebras Banach Transformada cuántica de Fourier

Álgebra líneal

- Espacios vectoriales y operadores líneales
- Representaciones matriciales y espectros
- Espacios y operadores unitarios
- Matrices hermíticas, matrices de Pauli

Álgebra multilineal

- Producto tensorial de espacios vectoriales
- Producto tensorial de operadores líneales
- Matrices de Dirac y álgebras de Clifford
- Grupos y álgebras de Lie

Análisis líneal

- Funciones de operadores líneales
- Exponencial de operadores líneales
- Ecuaciones de evolución
- Espacios de Hilbert y álgebras Banach
- Transformada cuántica de Fourier

Preliminares físicos

Mecánica Cuántica Carácter Ondulatorio de la Materia

@F. Calviño, 1997

Contenido

- Postulado de de Broglie (1924)
 - Interpretación de las leyes de cuantificación
 - Detección de la naturaleza ondulatoria de la materia
 - Experimento de Davisson-Germer (1927)
 - Interpretación del experimento de Davisson-Germer
- Experimento de la doble rendija (Young)
 - Dualidad onda-partícula
- Ondas de materia
- Interpretación de la función de onda
 - Función de onda. Densidad de probabilidad de presencia
- Ecuación de onda del campo eléctrico

@F. Calviño , 1997

Contenido (cont.)

- Paquete de onda
 - Ejemplo. Suma de dos ondas armónicas
 - Paquetes localizados
 - Definiciones y propiedades
- Principio de incertidumbre de Heisemberg (1927)
- Ecuación de Schrödinger (1925)
- Síntesis y Conclusión

@F. Calviño , 1997

Postulado de de Broglie (1924)

Interpretación de las leyes de cuantificación

Interpretación del experimento de Davisson-Germer

@F. Calviño, 1997

Experimento de la doble rendija (Young)

<u>Ondas</u>

Onda original dividida en dos cuya superposición produce el patrón de interferencias.

Partículas

Substituyendo la pantalla por una de material fotoeléctrico, y midiendo la energía y estructura temporal de los fotoelectrones.

Comportamiento diferenciado dependiendo del experimento

<u>Paradoja</u>

Considerando la radiación electromagnética como fotones, éstos pasarán por una rendija determinada,

¿Cómo es posible que un fotón sufra el efecto de una rendija por la que no ha pasado?

Falacia

No es posible saber por cuál rendija "pasa" el fotón sin medirlo. Ésta medida afectaría de tal forma al comportamiento de los fotones que el patrón de interferencia desaparecería

@F. Calviño , 1997

Dualidad onda-partícula

Ondas de materia

Según de Broglie a toda partícula se le asocia una función de onda.

La función de onda más sencilla que se puede asociar a una partícula de energía, *E*, y cantidad de movimiento, \vec{P} , es una onda plana,

Interpretación de la función de onda

Función de onda. Densidad de probabilidad de presencia

Ecuación de onda del campo eléctrico

Paquete de onda

Ejemplo. Suma de dos ondas armónicas

@F. Calviño , 1997

Paquetes localizados

Sumando un número discreto de ondas armónicas, o planas, **no se puede** construir un paquete cuya amplitud al cuadrado sea solo distinta de cero en una zona del espacio o un intervalo de tiempo. Es necesario utilizar un **número infinito** de número de ondas y/o pulsaciones.

$$\Psi(\vec{x},t) = \int g(\vec{k})e^{i(\vec{k}\vec{x}-w(k)t)}dk$$

$$\stackrel{[\Psi(\vec{x},t-t_0)]^2}{\underset{k_0}{\overset{k_0}{\atopk_0}{\overset{k$$

Paquete de Ondas. Definiciones y propiedades

×0, K0, Δ×, Δk,

Centro del paquete Centro del espectro

Anchura del espectro

Anchura del paquete \triangleleft Zona donde $|\Psi(\vec{x}, t = t_0)|^2 > 0$

Principio de incertidumbre de Heisemberg (1927)

@F. Calviño, 1997

Ecuación de Schrödinger (1925)

Ecuación de ondas cuyas soluciones son las funciones de ondas que caracterizan a las partículas sometidas a la acción de fuerzas.

Debe dar lugar a soluciones compatibles con los resultados experimentales

$$\boxed{-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) - i\hbar\frac{\partial\Psi(x,t)}{\partial t} = 0}$$
Potencial

SiV(x)=cte

$$\Psi(\vec{x},t) = \Psi_0 e^{i(\vec{k}\vec{x}-wt)}$$

es solución

 $\Psi(\vec{x},t) = \Psi_0 \sin(\vec{k}\vec{x} - wt)$

no es solución

@F. Calviño , 1997
Carácter ondulatorio de las partículas

@F. Calviño , 1997

- Primer postulado: A cada sistema físico descrito por la mecánica cuántica se le asocia un espacio de Hilbert, y a cada estado del sistema un vector (ket), de ese espacio.
- Segundo postulado: Toda cantidad física medible está descrita por un operador que actúa sobre el espacio de Hilbert, este operador es un observable.
- Tercer postulado: El único resultado posible de una medida física, es un autovalor del correspondiente observable.

Cuarto postulado (caso discreto no degenerado): Cuando una cantidad física es medida sobre un sistema, el cual está en un estado normalizado $|x\rangle$, la probabilidad de encontrar el autovalor a_n correspondiente a un observable \hat{A} es:

$$P(a_n) = |\langle n|x\rangle|^2,$$

donde $|n\rangle$ son los autovectores normalizados de \hat{A} , asociados a los autovalores a_n .

Quinto postulado: Si la medida de una cantidad física sobre un sistema que está en un estado $|x\rangle$ da un resultado a_n , el estado del sistema está, inmediatamente después de la medida, en la proyección normalizada,

$$\frac{\hat{P}_n \,|\, x\rangle}{\sqrt{\langle x |\hat{P}_n |x\rangle}},$$

de $|x\rangle$ sobre el auto-subespacio asociado a a_n .

Sexto postulado: La evolución en el tiempo del vector de estado $|x(t)\rangle$ es gobernada por la ecuación de Schrödinger:

$$i\hbar \frac{d}{dt} |x(t)\rangle = H(t) |x(t)\rangle,$$

donde H(t) es el Hamiltoniano del sistema, observable asociado con la energía.

Preliminares informáticos

In(computabilidad)

- Máquinas de Turing
- Máquina universal de Turing
- Compuertas lógicas universales
- In(tratabilidad)
 - Notación asintótica
 - Complejidad algorítmica
 - Clases de complejidad *P* y *NP*
 - Problemas *NP*-completos

 Compuertas cuánticas de 1-qubit Espacio vectorial de 1-qubit Operador unitario sobre 1-qubit Matrices de Pauli (X,Y,Z) Compuertas de Hadamard (H), fase (S) y π/8 (T)

Operadores de rotación y descomposiciones

- Compuertas cuánticas controladas Compuerta CNOT Compuerta U controlada y su implementación Compuerta C²(U) y su implementación
- Compuertas cuánticas universales

Compuerta Hadamard

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Compuerta de Pauli X

Circuito

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Compuerta de Pauli Y

$$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Compuerta de Pauli Z

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Compuerta de fase

Circuito

$$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Compuerta $\pi/8$

Circuito

$$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

Compuerta U

Circuito

$$U = e^{i\alpha}AXBXC, ABC = I$$

Compuerta CNOT

Circuito

$$\begin{array}{c|c} |c\rangle & & - & |c\rangle \\ \hline |t\rangle & & - & |t \oplus c\rangle \end{array}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Operación U **controlada**

Circuito

$$\begin{bmatrix} I & 0 \\ 0 & U^c \end{bmatrix}$$

Compuerta X controlada

Circuito

$$\begin{bmatrix} I & 0 \\ 0 & X^c \end{bmatrix}$$

Compuerta Z controlada

Circuito

$$\begin{bmatrix} I & 0 \\ 0 & Z^c \end{bmatrix}$$

Compuerta corrimiento de fase controlada Circuito $|c\rangle$ $|c\rangle$ $e^{i\alpha c}I \left| t \right\rangle$ $e^{i\alpha}I$ $|t\rangle$

$$\begin{bmatrix} I & 0 \\ 0 & e^{i\alpha c}I \end{bmatrix}$$

Representación matricial

 $U = e^{i\alpha}AXBXC, ABC = I$

Operación $C^2(U)$

Circuito

$$\begin{bmatrix} I & 0 \\ 0 & U^{c_1 c_2} \end{bmatrix}, I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

Operacion $C^2(U)$

Circuito

V es cualquier operador unitario que satisface $V^2 = U$. $V \equiv (1 - i)(I + iX)/2$ corresponde a la compuerta Toffoli.

Algoritmos cuánticos

Circuito cuántico para evaluar $f(x) : \{0,1\} \rightarrow \{0,1\}$. La compuerta U_f actúa sobre un sistema *2-qubit*. Aprovecha la superposición de estados del primer qubit para evaluar paralelamente f(0) y f(1).

Algoritmo de Deutsch

Circuito cuántico para el Algoritmo Deutsch

Algoritmo de Deutsch-Jozsa

Circuito cuántico para el algoritmo Deutsch-Jozsa

Factorización cuántica

- Transformada cuántica de Fourier
- Estimación de fase
- El orden r de x módulo N
- Algoritmo de Shor

En un sistema *n*-qubit, la transformada cuántica de Fourier F_q sobre los elementos de su base, se define como

$$F_q: \mathbb{C}^{2^n} \to \mathbb{C}^{2^n}$$
$$|k\rangle_n \mapsto c_0 |0\rangle_n + c_1 |1\rangle_n + \ldots + c_{2^n - 1} |2^n - 1\rangle ,$$

donde

$$F_q |k\rangle_n = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{\frac{2\pi i j k}{2^n}} |j\rangle_n$$
, para $0 \le k < 2^n$.

Debido a la *linealidad* de F_q , la transformada de Fourier cuántica sobre un sistema superpuesto $|\Psi\rangle = \alpha_0 |0\rangle_n + \alpha_1 |1\rangle_n + \ldots + \alpha_{2^n-1} |2^n - 1\rangle_n$ es $F_q |\Psi\rangle = F_q (\alpha_0 |0\rangle_n + \alpha_1 |1\rangle_n + \cdots + \alpha_{2^n-1} |2^n - 1\rangle_n)$ $= \alpha_0 F_q |0\rangle_n + \alpha_1 F_q |1\rangle_n + \cdots + \alpha_{2^n-1} F_q |2^n - 1\rangle_n$. La F_q para un estado base $|k\rangle_n = |k_1k_2...k_n\rangle$ se puede representar mediante

$$F_{q} \left| k \right\rangle_{n} = \frac{1}{\sqrt{2^{n}}} \left(\left| 0 \right\rangle + e^{2\pi i 0.k_{n}} \left| 1 \right\rangle \right) \otimes \left(\left| 0 \right\rangle + e^{2\pi i 0.k_{n-1}k_{n}} \left| 1 \right\rangle \right) \otimes \cdots \otimes \left(\left| 0 \right\rangle + e^{2\pi i 0.k_{1}k_{2}\ldots k_{n}} \left| 1 \right\rangle \right).$$

En un sistema *n*-qubit, la inversa de F_q sobre los elementos de su base, se define como

$$F_q^{-1} \colon \mathbb{C}^{2^n} \to \mathbb{C}^{2^n}$$
$$|k\rangle_n \mapsto c_0 |0\rangle_n + c_1 |1\rangle_n + \ldots + c_{2^n - 1} |2^n - 1\rangle ,$$

donde

$$F_q^{-1} \, | \, k \rangle_n = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n - 1} e^{-\frac{2\pi i j k}{2^n}} \, | \, j \rangle_n \,\,, \quad \text{para} \,\, 0 \leqslant k < 2^n \,.$$

Problema: Suponga un operador unitario *U* con un autovector $|u\rangle$ y un autovalor asociado $e^{2\pi i\varphi}$, es decir, $U |u\rangle = e^{2\pi i\varphi} |u\rangle$. El problema de la estimación de fase es determinar φ , con $\varphi \in [0, 1)$.

Se define la compuerta V de tal forma que

$$V(|j\rangle_t |u\rangle_m) = |j\rangle U^j |u\rangle$$
$$= |j\rangle e^{2\pi i\varphi j} |u\rangle$$
$$= e^{2\pi i\varphi j} |j\rangle |u\rangle$$

Algoritmo para la estimación de fase

1. Estado inicial del sistema (t+n)-qubit

$$|\Psi_0\rangle = |0\rangle_t |u\rangle_m \; .$$

2. Creación de una superposición de estados al aplicar $H^{\otimes t}$ sobre el primer registro

$$|\Psi_1\rangle = \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle_t |u\rangle_m$$

3. Se aplica *V* al sistema (t + m)-qubit

$$\begin{split} |\Psi_2\rangle &= \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} V(|j\rangle_t |u\rangle_m) \\ &= \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle_t U^j |u\rangle_m \\ &= \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} e^{2\pi i\varphi j} |j\rangle_t |u\rangle_m \end{split}$$

4. Se aplica F_q^{-1} al primer registro

$$\begin{split} |\Psi_{3}\rangle &= \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} e^{2\pi i\varphi j} \frac{1}{\sqrt{2^{t}}} \sum_{k=0}^{2^{t}-1} e^{\frac{-2\pi ijk}{2^{t}}} |k\rangle_{t} |u\rangle_{m} \\ &= \sum_{k=0}^{2^{t}-1} \frac{1}{2^{t}} \sum_{j=0}^{2^{t}-1} e^{2\pi i \left(\varphi - \frac{k}{2^{t}}\right)j} |k\rangle_{t} |u\rangle_{m} \\ &= \left| \widetilde{\varphi} \times 2^{t} \right\rangle_{t} |u\rangle_{m} . \end{split}$$

5. Se mide el primer registro y se divide por 2^t para obtener $\tilde{\varphi}$.

Circuito para la estimación de fase

Sean x, N dos enteros positivos coprimos con x < N. El orden de x módulo N es el menor entero positivo r, tal que $x^r \mod N = 1$. Ejemplo: Sean x = 5 y N = 21, el orden r de 5 módulo 21 es 6, pues

> $5^{1} \mod 21 = 5$, $5^{2} \mod 21 = 4$, $5^{3} \mod 21 = 20$, $5^{4} \mod 21 = 16$, $5^{5} \mod 21 = 17$, $5^{6} \mod 21 = 1$.

Algoritmo para hallar el orden r de x módulo N

1. Estado inicial

$$\Psi_0 \rangle = |0\rangle_t |1\rangle_n \; .$$

2. Empleando $H^{\otimes t}$ se crea una *superposición uniforme* de todos los estados de la base del sistema *t-qubit* sobre el primer registro

$$|\Psi_1\rangle = \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle_t |1\rangle_n$$

3. Se aplica la compuerta $V_{(x,N)}$ a todo el sistema

$$\Psi_2 \rangle = \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t - 1} V_{(x,N)} \left(|j\rangle_t |1\rangle_n \right)$$
$$= \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t - 1} |j\rangle_t |x^j \mod N\rangle_n$$

Suponga que r es potencia de dos de esta forma

$$|\Psi_2\rangle = \frac{1}{\sqrt{2^t}} \sum_{b=0}^{r-1} \sum_{a=0}^{\frac{2^t}{r}-1} |ar+b\rangle_t |x^b \mod N\rangle_n$$

4. Se mide el segundo registro y, con probabilidad 1/r, se obtiene un estado $|x^{b'} \mod N\rangle$ de los r posibles

$$|\Psi_3\rangle = \frac{1}{\sqrt{2^t/r}} \sum_{a=0}^{\frac{2^t}{r}-1} |ar+b'\rangle_t \left| x^{b'} \mod N \right\rangle_n$$

5. Se aplica F_q^{-1} al primer registro

$$\begin{split} \Psi_4 \rangle &= \frac{1}{\sqrt{2^t/r}} \sum_{a=0}^{\frac{2^t}{r}-1} \frac{1}{\sqrt{2^t}} \sum_{k=0}^{2^t-1} e^{\frac{-2\pi i k(ar+b')}{2^t}} |k\rangle_t \left| x^{b'} \mod N \right\rangle_n \\ &= \frac{1}{\sqrt{r}} \sum_{k=0}^{2^t-1} \frac{1}{2^t/r} \sum_{a=0}^{\frac{2^t}{r}-1} e^{-2\pi i \left(\frac{k}{2^t/r}\right)a} e^{-2\pi i \left(\frac{k}{2^t}\right)b'} |k\rangle_t \left| x^{b'} \mod N \right\rangle_n \\ &= \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{-2\pi i \left(\frac{s}{r}\right)b'} \left| s \cdot \frac{2^t}{r} \right\rangle_t \left| x^{b'} \mod N \right\rangle_n \,. \end{split}$$

6. Se mide el primer registro y se obtiene $s' \cdot \frac{2^t}{r}$, donde s' toma cualquier valor entre cero y (r-1). Luego se divide por 2^t y se aplica el algoritmo de fracciones continuas para obtener r o un r' factor de r.

Problema: Dado un entero *N*, determinar sus factores primos no triviales.

- 1. Mientras que *N* sea par divida *N* por dos y retorne el factor 2.
- 2. Verifique que *N* sea compuesto. Mediante el algoritmo de *Manindra* esto es posible en tiempo polinomial.
- 3. Determine si *N* es de la forma a^b , con a > 2 y $b \ge 2$, pues el método para *encontrar el orden* puede fallar si *N* es de esta forma con *a* primo impar. Si $N = a^b$, retorne *b* veces el factor *a*. Si *N* no es de la forma a^b vaya al paso (4).

- 4. Aleatoriamente elija un x, tal que 1 < x < N 1. Mediante el algoritmo de Euclides encuentre el máximo común divisor entre x y N. Mientras que m.c.d.(x, N) > 1, retorne el factor m.c.d.(x, N) y a N asígnele N dividido por m.c.d.(x, N). Si ahora N es un número primo termine el algoritmo. De lo contrario evalúe si es necesario encontrar los otros factores de N cuánticamente. En caso afirmativo vaya al paso (5), sino, encuentre los otros factores clásicamente.
- 5. Ejecute el algoritmo cuántico para encontrar el orden r de x módulo N.

 Si r es impar hay que ejecutar nuevamente la parte cuántica del algoritmo con un nuevo x, vaya al paso (4). Si r es par se define y como

$$x^{r/2} \mod N = y \,, \tag{1}$$

donde $0 \le y < N$. De (1) se tiene que $x^{r/2} = k_1N + y$, al elevar al cuadrado a ambos lados se obtiene

$$x^{r} = k_{1}^{2}N^{2} + 2k_{1}Ny + y^{2}$$
$$x^{r} = \left(k_{1}^{2}N + 2k_{1}y\right)N + y^{2}$$
$$x^{r} = k_{2}N + y^{2}.$$

(2)

Ahora, como $x^r \mod N = 1$ entonces

$$x^r = k_3 N + 1$$
. (3)

De la diferencia entre (2) y (3) se encuentra que $(y-1)(y+1) = (k_3 - k_2)N$, es decir, N divide a (y-1)(y+1). Luego, si 1 < y < N - 1 entonces 0 < y - 1 < y + 1 < N, lo cual implica que N no divide a y - 1 ó a y + 1separadamente. Se concluye que y - 1 y y + 1contienen factores de N por el *teorema fundamental de la aritmética*. Así, el m.c.d.(y - 1, N) y el m.c.d.(y + 1, N) son factores no triviales de N. En computación, la simulación es la ejecución de un algoritmo que finge un sistema de tal forma que *dadas unas condiciones iniciales*, se pretende determinar *cuáles serán las condiciones finales de éste*.

- En el presente: software clásico ejecutable en un computador clásico que sólo alcanza a simular sistemas cuánticos pequeños.
- En el futuro: software cuántico ejecutable en un computador cuántico que tendrá el potencial de simular sistemas cuánticos grandes.

En www.vcpc.univie.ac.at/~ian/hotlist/qc/programming.shtml hay una lista de enlaces a simuladores y lenguajes de computación cuántica. Dos de ellos que permiten la construcción y simulación de circuitos cuánticos son:

qcad

QuaSi

Ventajas:

- ✓ Su *GUI* es amigable.
- ✓ La contrucción de los circuitos es fácil.
- Resultados en forma gráfica, además de la notación de *Dirac*.

• Desventajas:

- ✓ Compuertas de medición ignoradas.
- No permite la realización de la simulación paso a paso.
- ✓ Para mostrar los resultados representa los qubits de derecha a izquierda así $|x_nx_{n-1}...x_2x_1\rangle$, es decir, el primer qubit es el del extremo derecho y el último es el del extremo izquierdo. Esto es contrario a la forma usual.
- ✓ El usuario no puede definir sus propias compuertas. Está limitado a las predefinidas.

El siguiente circuito fue construido y simulado utilizando **quasi**. Este circuito es una implementación optimizada del algoritmo de *Shor* para factorizar el número 15 con x = 7.

 $|\Psi\rangle = \frac{1}{4} \left(|0010\rangle |000\rangle + |0010\rangle |001\rangle - \right.$ $|0010\rangle |010\rangle - |0010\rangle |011\rangle +$ $|1000\rangle |000\rangle + |1000\rangle |001\rangle +$ $|1000\rangle |010\rangle + |1000\rangle |011\rangle +$ $|1011\rangle |000\rangle - |1011\rangle |001\rangle$ $i | 1011 \rangle | 010 \rangle + i | 1011 \rangle | 011 \rangle +$ $|1110\rangle |000\rangle - |1110\rangle |001\rangle +$ $i | 1110 \rangle | 010 \rangle - i | 1110 \rangle | 011 \rangle$).

QuaSi

Ventajas:

- ✓ Simulación paso a paso.
- Solamente los resultados con amplitudes diferentes de cero son mostrados.
- Demostraciones del algoritmo de Shor, del algoritmo de Deutsch-Jozsa y del algoritmo de Grover.

- Su *GUI* consta de cuatro ventanas: en la primera se construye el circuito; en la segunda se observa la evolución de la simulación en la notación de *Dirac*; en la tercera se grafica el valor absoluto de cada amplitud y su desplazamiento de fase relativo y en la cuarta ventana las amplitudes son mostradas divididas en su parte real (azul) e imaginaria (roja).
- Permite la creación de compuertas definidas por el usuario, definir funciones y cargar archivos XML que contienen instrucciones para la creación de circuitos cuánticos.

QuaSi

• Desventajas:

- Algunas veces se bloquea durante la construcción del circuito.
- ✓ Es tedioso a la hora de hacer modificaciones a los circuitos.
- Al repetir la simulación de un circuito n veces los datos obtenidos no corresponden con los esperados estadísticamente.

Ejemplo: teleportación cuántica

Circuito cuántico para transportar un qubit de un espacio físico a otro en ausencia de un canal físico de comunicación.

$$\begin{split} \left| \Psi_{0} \right\rangle &= \left| 0 \right\rangle \left| 0 \right\rangle \left| 0 \right\rangle ,\\ \left| \Psi_{1} \right\rangle &= \left| 0 \right\rangle \frac{1}{\sqrt{2}} \left(\left| 0 \right\rangle + \left| 1 \right\rangle \right) \left| 0 \right\rangle \\ &= \left| 0 \right\rangle \frac{1}{\sqrt{2}} \left(\left| 00 \right\rangle + \left| 10 \right\rangle \right) ,\\ \left| \Psi_{2} \right\rangle &= \left| 0 \right\rangle \frac{1}{\sqrt{2}} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) ,\\ \left| \Psi_{3} \right\rangle &= \left(\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle \right) \frac{1}{\sqrt{2}} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \\ &= \frac{\alpha}{\sqrt{2}} \left(\left| 000 \right\rangle + \left| 011 \right\rangle \right) + \frac{\beta}{\sqrt{2}} \left(\left| 100 \right\rangle + \left| 111 \right\rangle \right) ,\\ \left| \Psi_{4} \right\rangle &= \frac{\alpha}{\sqrt{2}} \left(\left| 000 \right\rangle + \left| 011 \right\rangle \right) + \frac{\beta}{\sqrt{2}} \left(\left| 110 \right\rangle + \left| 101 \right\rangle \right) \\ &= \frac{\alpha}{\sqrt{2}} \left| 0 \right\rangle \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) + \frac{\beta}{\sqrt{2}} \left| 1 \right\rangle \left(\left| 10 \right\rangle + \left| 01 \right\rangle \right) ,\\ \left| \Psi_{5} \right\rangle &= \frac{\alpha}{2} \left(\left| 0 \right\rangle + \left| 1 \right\rangle \right) \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) + \frac{\beta}{2} \left(\left| 010 \right\rangle + \left| 01 \right\rangle \right) \\ &= \frac{\alpha}{2} \left(\left| 000 \right\rangle + \left| 011 \right\rangle + \left| 100 \right\rangle + \left| 111 \right\rangle \right) + \frac{\beta}{2} \left(\left| 010 \right\rangle + \left| 011 \right\rangle - \left| 101 \right\rangle \right) , \end{split}$$

 Si al medir los primeros dos qubits se obtiene el estado |00> entonces

> $|\Psi_{6}\rangle = \alpha |000\rangle + \beta |001\rangle$ = $|00\rangle (\alpha |0\rangle + \beta |1\rangle),$ $|\Psi_{8}\rangle = |\Psi_{7}\rangle = |\Psi_{6}\rangle.$

 Si al medir los primeros dos qubits se obtiene el estado |01> entonces

$$\begin{split} |\Psi_{6}\rangle &= \alpha |011\rangle + \beta |010\rangle \\ &= |01\rangle \left(\alpha |1\rangle + \beta |0\rangle\right), \\ |\Psi_{7}\rangle &= |01\rangle \left(\alpha |0\rangle + \beta |1\rangle\right), \\ |\Psi_{8}\rangle &= |\Psi_{7}\rangle \;. \end{split}$$

 Si al medir los primeros dos qubits se obtiene el estado |10> entonces

$$\begin{split} |\Psi_{6}\rangle &= \alpha |100\rangle - \beta |101\rangle \\ &= |10\rangle \left(\alpha |0\rangle - \beta |1\rangle\right), \\ |\Psi_{7}\rangle &= |\Psi_{6}\rangle, \\ |\Psi_{8}\rangle &= |10\rangle \left(\alpha |0\rangle + \beta |1\rangle\right). \end{split}$$

 Si al medir los primeros dos qubits se obtiene el estado |11> entonces

$$\begin{split} |\Psi_{6}\rangle &= \alpha |111\rangle - \beta |110\rangle \\ &= |11\rangle \left(\alpha |1\rangle - \beta |0\rangle\right), \\ |\Psi_{7}\rangle &= |11\rangle \left(\alpha |0\rangle - \beta |1\rangle\right), \\ |\Psi_{8}\rangle &= |11\rangle \left(\alpha |0\rangle + \beta |1\rangle\right). \end{split}$$

Realización física

- Resonancia nuclear magnética (NMR)
- Implementación NMR con fase geométrica
- Computador cuántico atómico
- Iones atrapados
- Implementación óptica