Combining Interactive and Automatic Reasoning in
First-Order Theories of Functional Programs

Ana Bove!, Peter Dybjer! and Andrés Sicard-Ramirez?

1 Chalmers University of Technology, Sweden

2EAFIT University, Colombia

Foundations of Software Science and Computation Structures
(FoSSaCSs - ETAPS)
Tallinn, Estonia
28 March 2012



Introduction

What if we have written a Haskell-like program and we want to verify it?
@ What programming logic should we use?
@ What proof assistant should we use?

e Can (part of) the job be automatic?



Introduction

What if we have written a Haskell-like program and we want to verify it?
@ What programming logic should we use?
@ What proof assistant should we use?
e Can (part of) the job be automatic?

Combining three strands of research:

© Foundational frameworks and logics for functional programs (Aczel
1974, Dybjer 1985, Dybjer and Sander 1989, Bove, Dybjer and
Sicard-Ramirez 2009)

@ Proving correctness of functional programs using automatic theorem

provers for first-order logic (Claessen and Hamon 2003)

© Connecting automatic theorem provers for first-order logic to type
theory systems as Agda interactive proof assistant developed at
Chalmers (Tammet and Smith 1996, Abel, Coquand and Norell 2005)



Our approach

First-order theory of combinators (FOTC)
@ Logic for general recursive programs
@ Inductive and co-inductive definitions

@ Higher-order functions
@ Martin-Lof type theory is a subsystem of FOTC



Our approach

First-order theory of combinators (FOTC)
@ Logic for general recursive programs
@ Inductive and co-inductive definitions
@ Higher-order functions
@ Martin-Lof type theory is a subsystem of FOTC

Agda as a logical framework for FOTC
@ Using Agda's inductive notions
@ Attractive user interface for interactive theorem proving



Our approach

First-order theory of combinators (FOTC)
@ Logic for general recursive programs
@ Inductive and co-inductive definitions
@ Higher-order functions
@ Martin-Lof type theory is a subsystem of FOTC

Agda as a logical framework for FOTC
@ Using Agda's inductive notions
@ Attractive user interface for interactive theorem proving

Automatic proofs

@ An agda2atp program which translates first-order formulae in Agda
into TPTP, and calls automatic theorem provers at them

@ Combining automatic and interactive proofs



A First-Order Theory of Combinators |

Terms
tu=uwx | tt | true | false | if | O | succ | pred | iszero | f

where f a new combinator defined by a (recursive) equation

f tl t,n — 6[f7 tl’ ,tn}



A First-Order Theory of Combinators |

Terms
tu=ux | tt | true | false | if | O | succ | pred | iszero | f
where f a new combinator defined by a (recursive) equation
ftl t,n = 6[f7 tl’ ,tn}

Formulae

=T |L|[0=0|DAD|DVD | ~d |Vod | J2.d | t =t
| N(t) (totality natural numbers inductive predicate)
| Bool(t) (totality Booleans inductive predicates)

| ... (additional inductive and co-inductive predicates)



A First-Order Theory of Combinators |l

Conversion rules Discrimination rules
Vit if truett =t —(true = false)
Vtt'.if falsett’' =t Vt.—(0 = succ t)

Vt.pred (succt) =t
iszero 0 = true

Vt.iszero (succ t) = false



A First-Order Theory of Combinators |l

Conversion rules Discrimination rules
Vit if truett =t —(true = false)
Vtt'.if falsett’' =t Vt.—(0 = succ t)

Vt.pred (succt) =t
iszero 0 = true

Vt.iszero (succ t) = false

Axioms for N(t)
N{(t)
N(0) N(succt)
®(0) A (Vt.®(t) = P(succ t)) = VE.N(t) = D(¢)




Agda as a Logical Framework for First-Order Logic

Features

e Postulating the logical constant and their axioms (Martin-L6f's LF
1986, Edinburgh Logical Framework 1987)

o First-order formulae type: Agda set (or Seto). Agda’s first universe



Agda as a Logical Framework for First-Order Logic

Features

e Postulating the logical constant and their axioms (Martin-L6f's LF
1986, Edinburgh Logical Framework 1987)

o First-order formulae type: Agda set (or Seto). Agda’s first universe

Example (Axiom schemata for disjunction)

postulate

~V_ : Set - Set - Set

inj» : {AB : Set} ~A-AVB

inj2 : {AB : Set} - B> A VB

case : {ABC: Set} » (A-C) - (B-C)-AvB-=C



Agda as a Logical Framework for First-Order Logic

Features

e Postulating the logical constant and their axioms (Martin-L6f's LF
1986, Edinburgh Logical Framework 1987)

o First-order formulae type: Agda set (or Seto). Agda’s first universe

Example (Axiom schemata for disjunction)

postulate
~V_ : Set - Set - Set
inj» : {AB : Set} ~A-AVB
inj2 : {AB : Set} - B> A VB
case : {ABC: Set} » (A-C) - (B-C)-AvB-=C

Example (Interactive proof of commutativity of disjunction)

v-comm : {AB : Set} ~-AvB-BVA
v-comm h = case injz inji1 h



Proof by Pattern Matching

Example (Encoding disjunction)
data v_ (A B : Set) : Set where
inj. : A-AVB
inj> : B~ AV B

Example (Proof of commutativity of disjunction by pattern matching)
v-comm : {AB : Set} ~-AvB-BvVA
v-comm (inj: a) = inj2 a
v-comm (inj2 b) = inj:1 b



Interacting with Automatic Theorem Provers

Example (Automatic proof)

v-comm : {AB : Set} ~AvB-BvVvA
{-# ATP prove v-comm #-}



Interacting with Automatic Theorem Provers

Example (Automatic proof)

v-comm : {AB : Set} ~AvB-BvVvA
{-# ATP prove v-comm #-}

The automatic theorem provers use classical logic

We add as axiom the law of the excluded middle:
postulate lem : {A : Set} - Av - A



Combining Agda with Automatic Theorem Provers

Agda file + ATP-pragmas + [logical schemata options]

l

’ Modified version of Agda ‘

Agda interface file

Y

agda2atp ’ TPTP translation ‘

TPTP formula

<—{ calls the ATPs }—»W

[3\-

!

(Un)proven conjecture




Encoding Quantifiers

The domain of individuals of first-order logic
postulate D : Set

Universal quantifier
Vx-P=(x:D)-P

Existential quantifier
data 3 (P : D - Set) : Set where
, (x:D)->Px-3FP

syntax 3 (A x - P) =3[ x ] P



Encoding Conversion Rules

Function symbols
postulate

e D
if then else D-D-D->D
succ pred isZero : D - D

zero true false D

Conversion rules

postulate
if-true : V di dz2 - if true then di else d2 = d:
if-false : V di d2 » if false then di else d: = d2
pred-S : ¥V d- pred (succ d) =d
isZero-0 : isZero zero = true
isZero-S : V d -» isZero (succ d) = false

ATPs axioms
{-# ATP axiom if-true if-false pred-S isZero-0 isZero-S #-}



Encoding Totality Inductive Predicates

Example (Totality natural numbers predicate)
Introduction rules:
data N : D - Set where

zN : N zero
sN : V{n} > Nn-> N (succ n)
ATP axioms:
{-# ATP axiom zN sN #-}
Induction principle:
N-ind : (P : D - Set) -
P zero -

(V {n} > Pn->P (succn)) -
V{n} - Nn-Pn

Remark: We will often write proof by induction using Agda's pattern
matching.



The mirror Function |

Trees and forests constructors

postulate
[] : D
_node : D-D-D

Mutual totality predicates

data Forest : D - Set
data Tree : D - Set

data Forest where

nilF : Forest []

data Tree where
treeT : V d {ts} - Forest ts - Tree (node d ts)

ATP axioms
{-# ATP axiom nilF consF treeT #-}

consF : V {t ts} - Tree t - Forest ts - Forest (t @ ts)



The mirror Function |l

Map axioms

postulate
map :D-D-D
map-[] : V f-map f [] = []
map-: : ¥V fdds -map f (d @t ds) =f - d :: map f ds

{-# ATP axiom map-[] map-: #-}

Mirror axioms
postulate
mirror : D
mirror-eq : V d ts -
mirror - (node d ts) = node d (reverse (map mirror ts))
{-# ATP axiom mirror-eq #-}

Property

mirror-involutive : V {t} - Tree t - mirror - (mirror - t) = t



The mirror Function Il

Proof

The proof is by induction (pattern matching) on the mutually defined
totality predicates for trees and forests:
Base case:
mirror-involutive (treeT d nilF) = prf
where postulate prf : mirror - (mirror - node d []) = node d []
{-# ATP prove prf #-}
Inductive case:
mirror-involutive (treeT d (consF {t} {ts} Tt Fts)) = prf
where postulate prf : mirror - (mirror - node d (t : ts)) =
node d (t : ts)
{-# ATP prove prf helper #-}

Auxiliary lemma: (Proved similarly and given as a hint)

helper : V {ts} - Forest ts -
reverse (map mirror (reverse (map mirror ts))) = ts



The map-iterate Property |

Map and iterate axioms

postulate
map :D-D-D
map-[] : Vf ->map f []1 = []
map-: : ¥V fdds -map f (d ::ds) =f - d : map f ds

iterate :D-D-D
iterate-eq : V f x - iterate f x = x i iterate f (f - x)

{-# ATP axiom map-[] map-:: iterate-eq #-}

The property

Intuitively, map f (iterate f x) and iterate f (f - x) form the same
infinite list: £ - x : £« (f - x) : £+ (f - (f+ x))

How can the map-iterate property be proved?



The map-iterate Property Il

Co-induction on infinite lists
@ Bisimilarity: A co-inductive relation defined as a greatest fixed-point
= :D-D - Set

@ Unfolding rule and co-induction principle



The map-iterate Property Il

Co-induction on infinite lists

@ Bisimilarity: A co-inductive relation defined as a greatest fixed-point
= :D-D - Set

@ Unfolding rule and co-induction principle

The map-iterate property
Iterating a function and then mapping it gives the same result as applying
the function and then iterating it:

V f x - map f (iterate f x) = iterate f (f - x)

Proof
@ The co-induction scheme must be instantiated manually on the
relation (Giménez and Castéran, 2007):
Rxs ys =3[y ] xs =map f (iterate f y)
A ys = iterate f (f - vy)
@ The rest was done automatically for the ATPs



Additional examples

From website wwwl.eafit.edu.co/asicard/code/fossacs-2012/:
@ Modified version of Agda

@ The agda2atp program
o First-order theory of combinators

e The mirror function

The map-iterate property

The McCarthy 91 function

The alternating bit protocol written as a stream processing program
Additional examples of verification of programs

e Additional examples of first-order theories (Peano arithmetic, group
theory, etc)


www1.eafit.edu.co/asicard/code/fossacs-2012/

Conclusion

FOTC + Agda's inductive notions + external ATPs:
@ Strong logic (Martin-L&f type theory is a subsystem of FOTC)
@ General recursion
Inductive and co-inductive definitions

°
@ Higher-order functions
@ Termination proofs

°

Combined proofs using induction (pattern matching), co-induction,
and ATPs

@ Replacing the tedious equational reasoning by automatic proofs



Future work

@ Proof reconstruction for the automatically proved theorems

@ To merge FOTC-style for program verification with the dependently
typed programming style (normalization and automatic type-checking)

@ Integration with automatic inductive theorem provers

@ A translator between Haskell programs and our Agda encoding of
FOTC



Bonus slides



Termination Proofs

Addition axioms
postulate + :D-D-1D
+-0x : ¥ n - zero + n
+-Sx : ¥ mn - succm+
{-# ATP axiom +-0x +-Sx #-}

n
n = succ (m + n)

Example (Totality of addition)
+-N: V{mn}->Nm-Nn->N(m+ n)

Base case:

+-N {n = n} zN Nn = prf
where postulate prf : N (zero + n)
{-# ATP prove prf #-}

Inductive case:

+-N {n = n} (sN {m} Nm) Nn = prf (+-N Nm Nn)
where postulate prf : N (m + n) - N (succ m + n)
{-# ATP prove prf #-}



Replacing the Tedious Equational Reasoning

Example (Interactive proof)

+-comm : Vmn-Nm-Nn-m+n=n+m
+-comm m n zN Nn = -- omitted
+-comm m n (SN m Nm) Nn =
succ m + n ( +-Sx m n )
succ (m + n) =( cong succ (+-comm Nm Nn) )
succ (n + m) =( sym (x+Sy=S[x+y] m Nn) )
n + succm

Example (Combined proof)

+-comm : Vmn-Nm-Nn-m+n=n+nm

+-comm m n zN Nn = -- omitted
+-comm m n (sN m Nm) Nn = prf (+-comm Nm Nn)
where

postulate prf : m+ n=n+m- succm+n=n+succm
{-# ATP prove prf x+Sy=S[x+y] #-}



	FOTC
	Agda as a logical framework
	Mirror
	Conclusions

