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Introduction: Uses

Natural numbers have been used for
(i) counting (cardinal numbers),
(ii) ordering (ordinal numbers).

Timeline: https://mathigon.org/timeline.
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Introduction: Kronecker’s Quote

Leopold Kronecker (1823 – 1891)
(image from Wikipedia)

‘Die ganzen Zahlen hat der liebe Gott gemacht, alles
andere ist Menschenwerk.’ [Weber 1893, p. 15]

‘God made the integers, and all the rest is the work of
man.’ [Merzcbach and Boyer (1968) 2011, p. 542]
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Towards an Axiomatisation of the Arithmetic

Hermann Grassmann
(1809 – 1877)

Richard Dedekind
(1831 – 1916)

Giuseppe Peano
(1858 – 1932)

(Images from Wikipedia)
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Towards an Axiomatisation of the Arithmetic
Publications timeline (incomplete)

Grassmann 1861. Lehrbuch der Mathematik für höhere Lehranstalten.
(Mathematics Textbook for Higher Educational Institutions).

Dedekind 1888. Was sind und was sollen die Zahlen?
(What are numbers and what should they be?)

Peano 1889. Arithmetices Principia: Nova Methodo Exposita.
(The Principles of Arithmetic, Presented by a New Method)

Dedekind 1890. Letter to Keferstein.
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Towards an Axiomatisation of the Arithmetic
Peano’s Axioms for Arithmetic

Original version [Peano (1889) 1967, p. 94].
94 PEANO 

§ 1. NUMBERS AND ADDITION 

Explanations 

The sign N means number (positive integer). 

The sign 1 means unity. 
The sign a + 1] means the successor of a, or a plus 1. 

The sign = means is equal to. We consider this sign as new, although it has the 

form of a sign of logic. 

Axioms 

leN. 

aeN O.@=a. 

a,beN D:a=b.=.b=a 

a,b,ceNODuv.a=b.b=c O.a =. 

a=b.beN iD. aeN. 

aeNO.a+1eN. 

a4,beN O:a=b.=.a+1=b+4+1. 

aceND.a4+1—-=1. 

keKeleko.weN.wek0,.40+1lek::30.NOKk. C
O
N
 

e
o
r
r
 
w
h
 

re 

Definitions 

10. 2=1+1;3=2+1;4 = 3 +1; and so forth. 

Theorems 

11. 2eN. 

Proof : 

P19: leN (1) 

1 [a] (P 6) .D: leNO1L+1eN (2) 

(1) (2) .0: l+leN (3) 

P10.0: 2=1+1 (4) 

(4).(3).(2, 1 + 1) [a, 6] (P 5) 20: 2ZeN (Theorem). 

Note. We have written explicitly all the steps of this very easy proof. For the sake 

of brevity, we now write it as follows: 

P 1.1 [a] (P 6) :0:1 + Le N.P10.(2, 141) [a, 6] (P 5) :0: Th. 

or 

P1.P6:0:1+ 1eN.P10.P5 :0: Th. 

12. 3,4,...eN. 

13. a,ob,c,deN.a=bb=c.c=adinN:a=d. 

Proof: Hyp. P 4 :0:a,c,deN.a=c.c = d.P 4:0: Thes. 

14, a,b,ceN.a=b.b=c.am=c:=A.

Modern version [Wang 1957, p. 149].

The basic concepts are: 1, number, successor.
The axioms are:
P1. 1 is a number.
P2. The successor of any number is a number.
P3. No two numbers have the same successor.
P4. 1 is not the successor of any number.
P5. Any property which belongs to 1, and also

to the successor of every number which has
the property, belongs to all numb
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Foundations of Mathematics
Some foundational systems∗

(i) Set theories
(ii) Category theories
(iii) Type theories
(iv) Univalent foundations
(v) Homotopy type theories

∗See, for example, [Centrone, Kant and Sarikaya 2019].
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First-Order Theories
First-order logic: Two historical remarks

(i) ‘First-order logic was explicitly identified by Peirce in 1885, but then forgotten. It was inde-
pendently re-discovered in Hilbert’s 1917/18 lectures, and given wide currency in the 1928
monograph, Hilbert & Ackermann. Peirce was the first to identify it: but it was Hilbert
who put the system on the map.’ [Ewald 2019]

(ii) ‘Nevertheless, Hilbert did not at any point regard first-order logic as the proper basis for
mathematics. . . It was in Skolem’s work on set theory (1923) that first-order logic was
first proposed as all of logic and that set theory was first formulated within first-order
logic.’ [Moore 1988, p. 128]
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First-Order Theories
Preliminaries logics

First-order logic with identity
Non-logic symbols and non-logic axioms
Theories
Definitions

Example
Group theory.
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First-Order Dedekind-Peano Arithmetic
Non-logical symbols
The formal language L of the first-order theory of arithmetic (FA) is defined by

L = {′, +, ∗, 0}, where

(i) the symbol ′ is a unary function symbol (successor function),
(ii) the symbol + is a binary function symbol (addition function),
(iii) the symbol ∗ is a binary function symbol (multiplication function) and
(iv) the symbol 0 is a constant symbol (zero element).
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First-Order Dedekind-Peano Arithmetic
Axioms
Non-logical axioms of FA.∗

∀n (0 ̸= n′) (FA1)
∀m∀n (m′ = n′ ⊃ m = n) (FA2)

∀n (n + 0 = n) (FA3)
∀m∀n (m + n′ = (m + n)′) (FA4)

∀n (n ∗ 0 = 0) (FA5)
∀m∀n (m ∗ n′ = (m ∗ n) + m) (FA6)

For any property P ,

P0 ∧ ∀n (Pn ⊃ P (n′)) ⊃ ∀nPn (FA7) (axiom schema of induction)

∗See, for example, [Machover 1996; Hájek and Pudlák (1993) 1998; Skolem 1955; Robinson 1949].
13/67



Set Theories as Foundations
Some axiomatic set theories

Zermelo-Fraenkel set theory (ZF)
Zermelo-Fraenkel set theory with Choice (ZFC)
von Neumann-Bernays-Gödel set theory (NBG)
Morse-Kelley set theory (MK)
Tarski-Grothendieck set theory (TG)
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von Neumann Hierarchy of Sets

V1

V2

V3

V4

V5

Vω

Vω+1

Vω+2

Vω·2

Vω·3

Vω·ω

V0

. .
.

. .
.

. .
.

V0 := ∅
Vn+1 := PVn

...
Vω :=

⋃
n<ω

Vn

Vω+1 := PVω

...
Vλ :=

⋃
β<λ

Vβ

...
TikZ image adapted from https://tex.stackexchange.com/a/635569.
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Defining Natural Numbers from Set Theory
Definitional (non-axiomatic) approach

We shall define natural numbers in terms of sets.
We shall prove the properties of natural numbers from properties of sets.

16/67



Defining Natural Numbers from Set Theory
von Neumann’s construction
Informally: A natural number is the set of all smaller natural numbers (impredicative definition).

0 := ∅,

1 := {0} = {∅},

2 := {0, 1} = {∅, {∅}},

3 := {0, 1, 2} = {∅, {∅}, {∅, {∅}}},

...
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Defining Natural Numbers from Set Theory
Definition
Let a be a set. The successor of a is

a+ := a ∪ {a}.

Example

0 = ∅,

1 = ∅+,

2 = ∅++,

3 = ∅+++,

...
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Zermelo-Fraenkel Set Theory with Choice (ZFC)

Ernst Zermelo
(1871 – 1853)

Adolf Fraenkel
(1891 – 1965)

(Images from Wikipedia)
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Zermelo-Fraenkel Set Theory with Choice (ZFC)

Thoralf Skolem
(1887 – 1863)

John von Neumann
(1903 – 1957)

(Images from Wikipedia)
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Zermelo-Fraenkel Set Theory with Choice (ZFC)
ZFC as a foundational system for mathematics

‘Our axioms provide a sufficient collection of assumptions for the development of the whole
of mathematics—a remarkable fact.’ [Enderton 1977, p. 11]
‘Experience has shown that practically all notions used in contemporary mathematics can
be defined, and their mathematical properties derived, in this axiomatic system. In this
sense, the axiomatic set theory serves as a satisfactory foundations for the other branches
of mathematics.’ [Hrbacek and Jech (1978) 1999, p. 3]
‘Conventional mathematics is based on ZFC (the Zermelo-Fraenkel axioms, including the
Axiom of Choice). Working withing ZFC, on develops:. . . All the mathematics found in
basic texts on analysis, topology, algebra, etc.’ [Kunen (2011) 2013, p. 1]
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Zermelo-Fraenkel Set Theory with Choice (ZFC)
Primitive notions
We only need two primitive notions, ‘set’ and ‘member’.

First-order theory
ZFC is a first-order theory.

Non-logical symbols
In our formalisation of ZFC, the set of non-logical symbols is

L = {ϵ},

where ϵ is a binary predicate (relation) symbol.
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ZFC Axioms
Extensionality axiom
If two sets have exactly the same members, then they are equal, that is,

∀A ∀B [ ∀x (x ∈ A ↔ x ∈ B) → A = B ].

Question
Have we any set? No, we haven’t.
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ZFC Axioms
Empty set axiom
There is a set having no members, that is,

∃B ∀x (x ̸∈ B).

Remark
The empty set axiom is equivalent to

∃B ∀x (x ∈ B ↔ x ̸= x).
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ZFC Axioms
Pairing axiom
For any sets u and v, there is a set having as members just u and v, that is,

∀a ∀b ∃C ∀x (x ∈ C ↔ x = a ∨ x = b).
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ZFC Axioms
Union axiom
For any sets a and b, there is a set whose members are those sets belonging either to a or to b
(or both), that is,

∀a ∀b ∃B ∀x (x ∈ B ↔ x ∈ a ∨ x ∈ b).
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ZFC Axioms
Power set axiom
For any set a, there is a set whose members are exactly the subsets of a, that is,

∀a ∃B ∀x (x ∈ B ↔ x ⊆ a),

where
u ⊆ v := ∀t (t ∈ u → t ∈ v).
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Definitions from Set Abstraction
Definitions from the empty, pairing, union and power set axioms via set abstraction
Let a, b, u and v be sets, then we define

∅ := { x | x ̸= x } (empty set),
{u, v} := { x | x = u ∨ x = v } (pair set),

{u} := {u, u} (singleton set),
a ∪ b := { x | x ∈ a ∨ x ∈ b } (union),

Pa := { x | x ⊆ a } (power set).
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ZFC Axioms
Subset axiom scheme (axiom scheme of comprehension, axiom scheme of separation)
For any propositional function φ(x), not containing B, the following is an axiom:

∀c ∃B ∀x (x ∈ B ↔ x ∈ c ∧ φ(x)).

Remark
We stated an axiom scheme.

Set abstraction from the subset axiom scheme
{ x ∈ c | φ(x) } is the set of all x ∈ c satisfying the property φ.
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ZFC Axioms
Definition
A set A is inductive iff

∅ ∈ A and
if a ∈ A then a+ ∈ A.

Remark
An inductive is an infinite set.

Question
Are there inductive sets?
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ZFC Axioms
Infinity axiom
There exists an inductive set, that is,

∃A [ ∅ ∈ A ∧ ∀a (a ∈ A → a+ ∈ A) ].
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The Set of Natural Numbers
Definition
A natural number is a set that belongs to every inductive set.

Theorem
There is a set whose members are exactly the natural numbers [Enderton 1977, Theorem 4A].

Proof.
Let A be an inductive set. By the subset axiom scheme, there is a set

{ x ∈ A | x ∈ I for every inductive set I }.
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The Set of Natural Numbers
Definition
The set of all natural numbers, denoted by ω, is defined by

ω := { x ∈ A | x ∈ I for every inductive set I }.

That is,
x ∈ ω iff x is a natural number.
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The Set of Natural Numbers
Theorem
The set ω is inductive, and it is a subset of every other inductive set [Enderton 1977, The-
orem 4B].

Remark
The set w is the smallest inductive set
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The Set of Natural Numbers
Remark
Since that the collection of all inductive sets is not a set but a proper class, using class we could
define the set of natural numbers by

ω :=
⋂

{ A | A is an inductive set }.

Remark
Mendelson [(1973) 2008] in the proof of Theorem ZFC 8 defines the set ω as an intersection of
some inductive sets.
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Induction Principle for Natural Numbers
Induction principle for ω

Any inductive subset of ω coincides with ω [Enderton 1977, p. 69].
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Induction Principle for Natural Numbers
Induction principle for ω (other version)
Let P (x) be a property. Assume that
(i) P (0) holds,
(ii) for all n ∈ ω, P (n) implies P (n+).
Then P holds for all natural numbers n [Hrbacek and Jech (1978) 1999].

Proof.
‘This is an immediate consequence of our definition of w. The assumptions (i) and (ii) simple
say that the set A = { n ∈ ω | P (n) } is inductive. ω ⊆ A follows.’ [Hrbacek and Jech (1978)
1999, p. 42]
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Recursion on Natural Numbers
Recursion theorem on ω

Let A be a set, a ∈ A and F : A → A. Then there exists a unique function h such that [Enderton
1977, p. 73]

h : ω → A

h(0) = a,

h(n+) = F (h(n)), for all n ∈ ω.
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Arithmetic
Idea
We shall apply the recursion theorem to define addition and multiplication on ω.
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Arithmetic
Example
We want to define the function

A5 : w → w := n 7→ addition of 5 to n.

Let F : ω → ω := n 7→ n+. By the recursion theorem there exists a unique function

A5 : w → w

A5(0) = 5,

A5(n+) = (A5(n))+.
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Arithmetic
Example
Let m ∈ ω. By the recursion theorem there exists a unique function

Am : w → w

Am(0) = m,

Am(n+) = (Am(n))+.

55/67



Arithmetic
Definition
Let m and n be natural numbers. We define the addition of m and n by

(+) : w × w → w

m + n = Am(n).
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Arithmetic
Theorem
Let m and n be natural numbers. Then

n + 0 = n,

m + n+ = (m + n)+.
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Arithmetic
Example
Let m ∈ ω. By the recursion theorem there exists a unique function

Mm : w → w

Mm(0) = 0,

Mm(n+) = Mm(n) + m.
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Arithmetic
Definition
Let m and n be natural numbers. We define the multiplication of m and n by

(·) : w × w → w

m · n = Mm(n).
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Arithmetic
Theorem
Let m and n be natural numbers. Then

n · 0 = 0,

m · n+ = (m · n) + m.
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First-Order Dedekind-Peano Arithmetic from ZFC
Done!
(i) Zero �

(ii) Successor �
(iii) Addition �

(iv) Multiplication �

(v) Axiom schema of induction �
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Final Comments

(i) Benacerraf’s identification problem: Problem in reducing natural numbers to pure
sets [Benacerraf 1965].

(ii) Formalisation of mathematics: An error-prone task
In Principia Mathematica, Whitehead and Russell’s magnum opus, the proof that
1 + 1 = 2 is in page 360 (see Wikipedia).
In the mathematics of Bourbaki, the definition of number 1 requires approximately
4.5 × 1012 symbols [Mathias 2002].

(iii) Computer assisted proofs
Mizar mathematical library (over 59.000 theorems from Tarski-Grothendieck set
theory)
Metamath (over 23.000 theorems from ZFC set theory)
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