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Motivation

Question
Does parallelism increase the set of functions that can be computed?
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Abstract/Outline

It is accepted that the A-calculus is a model of computation. It is also known that Plotkin's
parallel-or function or Church’s § function are not A-definable. We discuss if some extensions
of the A-calculus, where these functions are definable, contradict the Church-Turing thesis.
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Lambda Calculus

Alonzo Church (1903 — 1995)*

*Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics .
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https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Lambda Calculus

Some remarks
@ A formal system invented by Church around 1930s.
The goal was to use the A-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Model of computation.

A free-type functional programming language.

A-notation (e.g., anonymous functions and currying).
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Lambda Calculus

Informally
A-calculus Example Represent
Variable T x
Abstraction A\z.z? +1 flx) =22 +1
Application  (A\z.z% +1)3 f(3)
B-reduction  (A\z.2? +1)3=g22+1[z:=3]=10 f(3)=10
Definition

The set of A-terms can be defined by an abstract grammar.

tu=x|tt]| Azt
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Lambda Calculus

Conventions and syntactic sugar
@ The symbol ‘=" denotes the syntactic identity.
@ Outermost parentheses are not written.

@ Application has higher precedence, i.e.,

Ax.MN = (Az.(MN)).

Application associates to the left, i.e.,
@ Abstraction associates to the right, i.e.,

AL1Z2 ... Tn. M = Ax1.AT9. ... Appy. M

= (Az1.(Az2.(... Azp.M)...))).
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Lambda Calculus

Example
Some A-terms.

e zx (self-application)
e | = \z.z (identity operator)

e true = \xy.x

false = Axy.y

zero = Afr.x

succ = Anfz.f(nfx)

Af.VV, where V = Az. f(zx) (fixed-point operator)

o ) = ww, where w = \z.zx.
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Lambda Calculus

Definition
A variable x occurs free in M if x is not in the scope of Axz. Otherwise, x occurs bound.

Notation

The result of substituting NV for every free occurrence of x in M, and changing bound variables
to avoid clashes, is denoted by M|z := N |.*

*See, e.g., Hindley and Seldin [ . Definition 1.12].
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Lambda Calculus

Definition

A combinator (or closed A-term) is a A-term without free variables.

Convention

A combinator called for example succ will be denoted by succ.

Remark

The programs in a programming language based on A-calculus are combinators.
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Lambda Calculus

Conversion rules

The functional behaviour of the A-calculus is formalised through of their conversion rules:

Ax.N =4 \y.(N[z :=vy]) (a-conversion)
(Ax.M)N =5 M|z := N] (/-conversion)
o.Mz =, M (n-conversion)
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Lambda Calculus

Example

Some examples of S-equality (or S-convertibility).

o | M=gM
@ succ zero =g Afx.fx = one
@ succone =g Afz.f(fx) = two

0 Q= (Azar)(Avaoxr)=3Q=0=50...
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Lambda Calculus

Definition

A (B-redex is a A-term of the form (Az.M)N.

Definition

A A-term which contains no [-redex is in B-normal form (/3-nf).

Definition

A A-term N is a B-nf of M (or M has the B-nf M) iff N is a f-nf and M =5 N.
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Lambda Calculus

Theorem

Church [ , | proved that the set

{M € M-term | M has a S-normal form}

is not computable.* This was the first not computable (undecidable) set ever.f

*We use the term ‘computable’ rather than ‘recursive’ following to Soare | I
TSee also Barendregt | I
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The Church-Turing Thesis

Alan Mathison Turing (1912 — 1954)*

*Figures sources: Wikipedia and National Portrait Gallery .
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https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

The Church-Turing Thesis

Stephen Cole Kleene (1909 — 1994)*

*Figures sources: MacTutor History of Mathematics and Oberwolfach.
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http://www-history.mcs.st-andrews.ac.uk/Biographies/Kleene.html
https://opc.mfo.de/detail?photo_id=2122

The Church-Turing Thesis

Theorem
The following sets are coextensive:
i) A-definable functions,
ii) functions computable by a Turing machine and

iii) general recursive functions.
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The Church-Turing Thesis

Common versions of the Church-Turing thesis

“A function is computable (effectively calculable) if and only if there is a Turing
machine which computes it.” [Galton 2006, p. 94]

“The unprovable assumption that any general way to compute will allow us compute
only the partial-recursive functions (or equivalently, what Turing machines or modern-
day computers can compute) is know as Church’s hypothesis or the Church-Turing
thesis.” [Hopcroft, Motwani and Ullman 2007, p. 236]
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The Church-Turing Thesis

Historical remark

The Church-Turing thesis was not stated by Church nor Turing (they stated definitions) but by
Kleene.*

An imprecision

Church | | and Turing | | definitions were in relation to a computor (human com-
puter).

*See, e.g., Soare [1996] and Copeland [2002].
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The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan 1999]
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The Church-Turing Thesis

A better version of the Church-Turing thesis
“Any procedure than can be carried out by an idealised human clerk working mechan-

ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan |

Question

Why are we talking about “versions” of the Church-Turing thesis?
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The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-

ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan |

Question

Why are we talking about “versions” of the Church-Turing thesis?

A/ Because the term 'Church-Turing thesis’ was first named, but not defined, by Kleene in
1952 [Jay and Vergara ]
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Plotkin's parallel-or Function
Definition

Let a be an arbitrary type and let f and 1 be a terminating and a non-terminating function
from a to a, respectively. Plotkin [ | parallel-or function has the following behaviour:

pOr: (a—a)— (a—a) v a—a

pOr f L =f
pOr L f=f
pOr L 1L =1
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http://hackage.haskell.org/package/unamb

Plotkin's parallel-or Function

Definition

Let a be an arbitrary type and let f and 1 be a terminating and a non-terminating function
from a to a, respectively. Plotkin [ | parallel-or function has the following behaviour:

pOr: (a—a)— (a—a) v a—a

pOr f L =f
pOr L f=f
pOr L 1L =1

Haskell implementation

See the unamb function from the unambiguous choice library.*
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http://hackage.haskell.org/package/unamb

Plotkin's parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:*

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.
A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”
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https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Plotkin's parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:*

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.

A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”

Question

Are we talking about a parallel or concurrent function?
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https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Plotkin's parallel-or Function

Theorem

The parallel-or function is an effectively calculable function which is not A-definable [Plotkin

].*

*See, also, Turner | I
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Church's § Function

Definition
Let A be the set of A\-terms, let = be the syntactic identity on A-terms and let M and N be
two combinators in 8-normal form. Church’s § function is defined by

true, if M = N;
OMN =
true, if M # N.
Theorem
Church’s § function is not A-definable [Barendregt , Corollary 20.3.3, p. 520].
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Extensions of Lambda Calculus

Jay and Vergara | | wrote (emphasis is ours):

“For over fifteen years, the lead author has been developing calculi that are more
expressive than \-calculus, beginning with the constructor calculus [8], then pattern
calculus [2,7,3], SF-calculus [6] and now ASF-calculus [5]. ..

[The] \SF-calculus is able to query programs expressed as \-abstractions, as well as
combinators, something that is beyond pure A-calculus.

In particular, we have proved (and verified in Coq [4]) that equality of closed normal
forms is definable within A\SF'-calculus.”
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Extensions of Lambda Calculus

Jay and Vergara | | also stated the following corollaries:
1. Church’s 9 is AS F-definable.
2. Church’s § is A-definable.
3. Church’s § is not A-definable.
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Discussion

Question

Do Plotkin's parallel-or function or Church’s § function—which are effectively calculable
functions but they are not A-definable functions—contradict the Church-Turing thesis?
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Discussion

Question

Do Plotkin's parallel-or function or Church’s § function—which are effectively calculable
functions but they are not A-definable functions—contradict the Church-Turing thesis?

A/ No! But we need a better version of the Church-Turing thesis.
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Discussion

Definition
A function f is a number-theoretical function iff

f:NF 5 N, with k € N.
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Discussion

Definition

A function f is a number-theoretical function iff
f:NF 5 N, with k € N.

Theorem
The following sets are coextensive:
i) A-definable number-theoretical functions,

ii) number-theoretical functions computable by a Turing machine and
iii) general recursive functions.

Remark

The above theorem is historically precise as pointed out in [Jay and Vergara
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Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working
mechanically with paper and pencil can also be computed by a Turing machine.
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Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:
Any number-theoretical function than can be computed by an idealised human clerk working

mechanically with paper and pencil can also be computed by a Turing machine.

Remark

Jay and Vergara | : | also negatively answer the question under discussion stating other
versions of the Church-Turing thesis.
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