
Computability and Parallelism

Andrés Sicard-Ramírez

Ciclo de Conferencias
Centro de Computación Científica Apolo

Universidad EAFIT
2018-09-19

Motivation

Question
Does parallelism increase the set of functions that can be computed?

2/40

Abstract/Outline

It is accepted that the λ-calculus is a model of computation. It is also known that Plotkin’s
parallel-or function or Church’s δ function are not λ-definable. We discuss if some extensions
of the λ-calculus, where these functions are definable, contradict the Church-Turing thesis.

3/40

Lambda Calculus

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics .
4/40

https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Lambda Calculus

Some remarks
A formal system invented by Church around 1930s.
The goal was to use the λ-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Model of computation.
A free-type functional programming language.
λ-notation (e.g., anonymous functions and currying).

5/40

Lambda Calculus

Informally

λ-calculus Example Represent
Variable x x

Abstraction λx.x2 + 1 f(x) = x2 + 1
Application (λx.x2 + 1)3 f(3)
β-reduction (λx.x2 + 1)3 =β x2 + 1[x := 3] ≡ 10 f(3) = 10

Definition
The set of λ-terms can be defined by an abstract grammar.

t ::= x | t t | λx.t

6/40

Lambda Calculus
Conventions and syntactic sugar

The symbol ‘≡’ denotes the syntactic identity.
Outermost parentheses are not written.
Application has higher precedence, i.e.,

λx.MN ≡ (λx.(MN)).

Application associates to the left, i.e.,

MN1 . . . Nk ≡ (. . . ((MN1)N1) . . . Nk).

Abstraction associates to the right, i.e.,

λx1x2 . . . xn.M ≡ λx1.λx2. . . . λxn.M

≡ (λx1.(λx2.(. . . (λxn.M) . . .))).
7/40

Lambda Calculus
Example
Some λ-terms.

xx (self-application)

I ≡ λx.x (identity operator)

true ≡ λxy.x

false ≡ λxy.y

zero ≡ λfx.x

succ ≡ λnfx.f(nfx)

λf.V V , where V ≡ λx.f(xx) (fixed-point operator)

Ω ≡ ww, where ω ≡ λx.xx.
8/40

Lambda Calculus

Definition
A variable x occurs free in M if x is not in the scope of λx. Otherwise, x occurs bound.

Notation
The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes, is denoted by M [x := N].∗

∗See, e.g., Hindley and Seldin [2008, Definition 1.12].
9/40

Lambda Calculus

Definition
A combinator (or closed λ-term) is a λ-term without free variables.

Convention
A combinator called for example succ will be denoted by succ.

Remark
The programs in a programming language based on λ-calculus are combinators.

10/40

Lambda Calculus

Conversion rules
The functional behaviour of the λ-calculus is formalised through of their conversion rules:

λx.N =α λy.(N [x := y]) (α-conversion)

(λx.M)N =β M [x := N] (β-conversion)

λx.Mx =η M (η-conversion)

11/40

Lambda Calculus

Example
Some examples of β-equality (or β-convertibility).

I M =β M

succ zero =β λfx.fx ≡ one

succ one =β λfx.f(fx) ≡ two

Ω ≡ (λx.xx)(λx.xx) =β Ω =β Ω =β Ω . . .

12/40

Lambda Calculus

Definition
A β-redex is a λ-term of the form (λx.M)N .

Definition
A λ-term which contains no β-redex is in β-normal form (β-nf).

Definition
A λ-term N is a β-nf of M (or M has the β-nf M) iff N is a β-nf and M =β N .

13/40

Lambda Calculus

Theorem
Church [1935, 1936] proved that the set

{M ∈ λ-term | M has a β-normal form}

is not computable.∗ This was the first not computable (undecidable) set ever.†

∗We use the term ‘computable‘ rather than ‘recursive‘ following to Soare [1996].
†See also Barendregt [1990].

14/40

The Church-Turing Thesis

Alan Mathison Turing (1912 – 1954)∗

∗Figures sources: Wikipedia and National Portrait Gallery .
15/40

https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

The Church-Turing Thesis

Stephen Cole Kleene (1909 – 1994)∗

∗Figures sources: MacTutor History of Mathematics and Oberwolfach.
16/40

http://www-history.mcs.st-andrews.ac.uk/Biographies/Kleene.html
https://opc.mfo.de/detail?photo_id=2122

The Church-Turing Thesis

Theorem
The following sets are coextensive:

i) λ-definable functions,
ii) functions computable by a Turing machine and
iii) general recursive functions.

17/40

The Church-Turing Thesis

Common versions of the Church-Turing thesis

“A function is computable (effectively calculable) if and only if there is a Turing
machine which computes it.” [Galton 2006, p. 94]

“The unprovable assumption that any general way to compute will allow us compute
only the partial-recursive functions (or equivalently, what Turing machines or modern-
day computers can compute) is know as Church’s hypothesis or the Church-Turing
thesis.” [Hopcroft, Motwani and Ullman 2007, p. 236]

18/40

The Church-Turing Thesis

Historical remark
The Church-Turing thesis was not stated by Church nor Turing (they stated definitions) but by
Kleene.∗

An imprecision
Church [1936] and Turing [1936–1937] definitions were in relation to a computor (human com-
puter).

∗See, e.g., Soare [1996] and Copeland [2002].
19/40

The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan 1999]

Question
Why are we talking about “versions” of the Church-Turing thesis?

A/ Because the term ’Church-Turing thesis’ was first named, but not defined, by Kleene in
1952 [Jay and Vergara 2004].

20/40

The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan 1999]

Question
Why are we talking about “versions” of the Church-Turing thesis?

A/ Because the term ’Church-Turing thesis’ was first named, but not defined, by Kleene in
1952 [Jay and Vergara 2004].

21/40

The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan 1999]

Question
Why are we talking about “versions” of the Church-Turing thesis?

A/ Because the term ’Church-Turing thesis’ was first named, but not defined, by Kleene in
1952 [Jay and Vergara 2004].

22/40

Plotkin’s parallel-or Function

Definition
Let a be an arbitrary type and let f and ⊥ be a terminating and a non-terminating function
from a to a, respectively. Plotkin [1977] parallel-or function has the following behaviour:

pOr :: (a → a) → (a → a) → a → a

pOr f ⊥ = f

pOr ⊥ f = f

pOr ⊥ ⊥ = ⊥

Haskell implementation
See the unamb function from the unambiguous choice library.∗

∗http://hackage.haskell.org/package/unamb .
23/40

http://hackage.haskell.org/package/unamb

Plotkin’s parallel-or Function

Definition
Let a be an arbitrary type and let f and ⊥ be a terminating and a non-terminating function
from a to a, respectively. Plotkin [1977] parallel-or function has the following behaviour:

pOr :: (a → a) → (a → a) → a → a

pOr f ⊥ = f

pOr ⊥ f = f

pOr ⊥ ⊥ = ⊥

Haskell implementation
See the unamb function from the unambiguous choice library.∗

∗http://hackage.haskell.org/package/unamb .
24/40

http://hackage.haskell.org/package/unamb

Plotkin’s parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:∗

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.
A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”

Question
Are we talking about a parallel or concurrent function?

∗https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html .
25/40

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Plotkin’s parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:∗

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.
A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”

Question
Are we talking about a parallel or concurrent function?

∗https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html .
26/40

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Plotkin’s parallel-or Function

Theorem
The parallel-or function is an effectively calculable function which is not λ-definable [Plotkin
1977].∗

∗See, also, Turner [2006].
27/40

Church’s δ Function

Definition
Let ∆ be the set of λ-terms, let ≡ be the syntactic identity on λ-terms and let M and N be
two combinators in β-normal form. Church’s δ function is defined by

δMN =
{

true, if M ≡ N ;
true, if M ̸≡ N.

Theorem
Church’s δ function is not λ-definable [Barendregt 2004, Corollary 20.3.3, p. 520].

28/40

Extensions of Lambda Calculus

Jay and Vergara [2017] wrote (emphasis is ours):

“For over fifteen years, the lead author has been developing calculi that are more
expressive than λ-calculus, beginning with the constructor calculus [8], then pattern
calculus [2,7,3], SF -calculus [6] and now λSF -calculus [5]. . .

[The] λSF -calculus is able to query programs expressed as λ-abstractions, as well as
combinators, something that is beyond pure λ-calculus.

In particular, we have proved (and verified in Coq [4]) that equality of closed normal
forms is definable within λSF -calculus.”

29/40

Extensions of Lambda Calculus

Jay and Vergara [2017] also stated the following corollaries:
1. Church’s δ is λSF -definable.
2. Church’s δ is λ-definable.
3. Church’s δ is not λ-definable.

30/40

Discussion

Question
Do Plotkin’s parallel-or function or Church’s δ function—which are effectively calculable
functions but they are not λ-definable functions—contradict the Church-Turing thesis?

A/ No! But we need a better version of the Church-Turing thesis.

31/40

Discussion

Question
Do Plotkin’s parallel-or function or Church’s δ function—which are effectively calculable
functions but they are not λ-definable functions—contradict the Church-Turing thesis?

A/ No! But we need a better version of the Church-Turing thesis.

32/40

Discussion

Definition
A function f is a number-theoretical function iff

f : Nk → N, with k ∈ N.

Theorem
The following sets are coextensive:

i) λ-definable number-theoretical functions,
ii) number-theoretical functions computable by a Turing machine and
iii) general recursive functions.

Remark
The above theorem is historically precise as pointed out in [Jay and Vergara 2004].

33/40

Discussion

Definition
A function f is a number-theoretical function iff

f : Nk → N, with k ∈ N.

Theorem
The following sets are coextensive:

i) λ-definable number-theoretical functions,
ii) number-theoretical functions computable by a Turing machine and
iii) general recursive functions.

Remark
The above theorem is historically precise as pointed out in [Jay and Vergara 2004].

34/40

Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working
mechanically with paper and pencil can also be computed by a Turing machine.

Remark
Jay and Vergara [2004, 2017] also negatively answer the question under discussion stating other
versions of the Church-Turing thesis.

35/40

Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working
mechanically with paper and pencil can also be computed by a Turing machine.

Remark
Jay and Vergara [2004, 2017] also negatively answer the question under discussion stating other
versions of the Church-Turing thesis.

36/40

References

Barendregt, H. P. [1984] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition,
6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on
p. 28).
Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of The-
oretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT
Press. Chap. 7. doi: 10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 14).
Church, Alonzo (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report
(Abstract). Bulletin of the American Mathematical Society 41.5, pp. 332–333. doi: 10.1090/
S0002-9904-1935-06102-6 (cit. on p. 14).
— (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Math-
ematics 58.2, pp. 345–363. doi: 10.2307/2371045 (cit. on pp. 14, 19).
Copeland, B. Jack (2002). Hypercomputation. Minds and Machines 12.4, pp. 461–502. doi: 10.
1023/A:1021105915386 (cit. on p. 19).
Copeland, B. Jack and Sylvan, Richard (1999). Beyond the Universal Turing Machine. Australasian
Journal of Philosophy 77.1, pp. 44–66. doi: 10.1080/00048409912348801 (cit. on pp. 20–22).

37/40

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.2307/2371045
https://doi.org/10.1023/A:1021105915386
https://doi.org/10.1023/A:1021105915386
https://doi.org/10.1080/00048409912348801

References
Galton, Antony (2006). The Church-Turing Thesis: Still Valid after All These Years? Applied Math-
ematics and Computation 178.1, pp. 93–102. doi: 10.1016/j.amc.2005.09.086 (cit. on p. 18).
Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Intro-
duction. Cambridge University Press (cit. on p. 9).
Hopcroft, John E., Motwani, Rajeev and Ullman, Jefferey D. [1979] (2007). Introduction to Auto-
mata theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 18).
Jay, Barry and Vergara, Jose (2004). Confusion in the Church-Turing Thesis. Draft version. url:
https://arxiv.org/abs/1410.7103 (cit. on pp. 20–22, 33–36).
— (2017). Conflicting Accounts of λ-Definability. Journal of Logical and Algebraic Methods in
Programming 87, pp. 1–3. doi: 10.1016/j.jlamp.2016.11.001 (cit. on pp. 29, 30, 35, 36).
Plotkin, G. D. (1977). LCF Considered as a Programming Language. Theoretical Computer Science
5.3, pp. 223–255. doi: 10.1016/0304-3975(77)90044-5 (cit. on pp. 23, 24, 27).
Soare, Robert I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic 2.3, pp. 284–
321. doi: 10.2307/420992 (cit. on pp. 14, 19).

38/40

https://doi.org/10.1016/j.amc.2005.09.086
https://arxiv.org/abs/1410.7103
https://doi.org/10.1016/j.jlamp.2016.11.001
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.2307/420992

References
Turing, Alan M. (1936–1937). On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceeding of the London Mathematical Society s2-42, pp. 230–265. doi: 10.
1112/plms/s2-42.1.230 (cit. on p. 19).
Turner, David (2006). Church’s Thesis and Functional Programming. In: Church’s Thesis After 70
Years. Ed. by Olszewski, Adam, Woleński, Jan and Janusz, Robert. Ontos Verlag, pp. 518–544.
doi: 10.1515/9783110325461.518 (cit. on p. 27).

39/40

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1515/9783110325461.518

Thanks!

