Computability and Parallelism

Andrés Sicard-Ramírez

Ciclo de Conferencias Centro de Computación Científica Apolo Universidad EAFIT 2018-09-19

Motivation

Question

Does parallelism increase the set of functions that can be computed?

Abstract/Outline

It is accepted that the λ -calculus is a model of computation. It is also known that Plotkin's parallel-or function or Church's δ function are not λ -definable. We discuss if some extensions of the λ -calculus, where these functions are definable, contradict the Church-Turing thesis.

Alonzo Church (1903 - 1995)*

^{*}Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics .

Some remarks

- A formal system invented by Church around 1930s.
- \bullet The goal was to use the $\lambda\text{-calculus}$ in the foundation of mathematics.
- Intended for studying functions and recursion.
- Model of computation.
- A free-type functional programming language.
- λ -notation (e.g., anonymous functions and currying).

Informally

λ -calculus	Example	Represent
Variable	x	x
Abstraction	$\lambda x.x^2 + 1$	$f(x) = x^2 + 1$
Application	$(\lambda x.x^2 + 1)3$	f(3)
β -reduction	$(\lambda x.x^2 + 1)3 =_\beta x^2 + 1[x := 3] \equiv 10$	f(3) = 10

Definition

The set of λ -terms can be defined by an abstract grammar.

 $t ::= x \mid t t \mid \lambda x.t$

Conventions and syntactic sugar

- The symbol ' \equiv ' denotes the syntactic identity.
- Outermost parentheses are not written.
- Application has higher precedence, i.e.,

$$\lambda x.MN \equiv (\lambda x.(MN)).$$

• Application associates to the left, i.e.,

$$MN_1 \dots N_k \equiv (\dots ((MN_1)N_1) \dots N_k).$$

• Abstraction associates to the right, i.e.,

$$\lambda x_1 x_2 \dots x_n M \equiv \lambda x_1 \lambda x_2 \dots \lambda x_n M$$
$$\equiv (\lambda x_1 . (\lambda x_2 . (\dots (\lambda x_n . M) \dots))).$$

Example

Some λ -terms.

- xx (self-application)
- $I \equiv \lambda x.x$ (identity operator)
- true $\equiv \lambda xy.x$
- false $\equiv \lambda x y. y$
- zero $\equiv \lambda f x. x$
- $\operatorname{succ} \equiv \lambda n f x. f(n f x)$
- $\lambda f.VV$, where $V \equiv \lambda x.f(xx)$ (fixed-point operator)
- $\Omega \equiv ww$, where $\omega \equiv \lambda x.xx$.

Definition

A variable x occurs free in M if x is not in the scope of λx . Otherwise, x occurs bound.

Notation

The result of substituting N for every free occurrence of x in M, and changing bound variables to avoid clashes, is denoted by M[x := N].*

^{*}See, e.g., Hindley and Seldin [2008, Definition 1.12].

Definition

A combinator (or closed λ -term) is a λ -term without free variables.

Convention

A combinator called for example succ will be denoted by succ.

Remark

The programs in a programming language based on λ -calculus are combinators.

Conversion rules

The functional behaviour of the λ -calculus is formalised through of their conversion rules:

$$\begin{split} \lambda x.N &=_{\alpha} \lambda y.(N[x := y]) & (\alpha \text{-conversion}) \\ (\lambda x.M)N &=_{\beta} M[x := N] & (\beta \text{-conversion}) \\ \lambda x.Mx &=_{\eta} M & (\eta \text{-conversion}) \end{split}$$

Example

Some examples of β -equality (or β -convertibility).

- $\bullet \ | \ M =_\beta M$
- succ zero $=_{\beta} \lambda f x. f x \equiv$ one
- succ one $=_{\beta} \lambda f x. f(fx) \equiv \mathsf{two}$
- $\Omega \equiv (\lambda x.xx)(\lambda x.xx) =_{\beta} \Omega =_{\beta} \Omega =_{\beta} \Omega \dots$

Definition

A β -redex is a λ -term of the form $(\lambda x.M)N$.

Definition

A λ -term which contains no β -redex is in β -normal form (β -nf).

Definition

A λ -term N is a β -nf of M (or M has the β -nf M) iff N is a β -nf and $M =_{\beta} N$.

Theorem

```
Church [1935, 1936] proved that the set
```

```
\{M \in \lambda \text{-term} \mid M \text{ has a } \beta \text{-normal form}\}
```

is not computable.* This was the first not computable (undecidable) set ever.[†]

^{*}We use the term 'computable' rather than 'recursive' following to Soare [1996]. [†]See also Barendregt [1990].

Alan Mathison Turing (1912 - 1954)*

*Figures sources: Wikipedia and National Portrait Gallery .

Stephen Cole Kleene (1909 - 1994)*

*Figures sources: MacTutor History of Mathematics and Oberwolfach.

Theorem

The following sets are coextensive:

- i) λ -definable functions,
- ii) functions computable by a Turing machine and
- iii) general recursive functions.

Common versions of the Church-Turing thesis

"A function is computable (effectively calculable) if and only if there is a Turing machine which computes it." [Galton 2006, p. 94]

"The unprovable assumption that any general way to compute will allow us compute only the partial-recursive functions (or equivalently, what Turing machines or modernday computers can compute) is know as Church's hypothesis or the Church-Turing thesis." [Hopcroft, Motwani and Ullman 2007, p. 236]

Historical remark

The Church-Turing thesis was not stated by Church nor Turing (they stated definitions) but by Kleene.*

An imprecision

Church [1936] and Turing [1936–1937] definitions were in relation to a computor (human computer).

^{*}See, e.g., Soare [1996] and Copeland [2002].

A better version of the Church-Turing thesis

"Any procedure than can be carried out by an idealised human clerk working mechanically with paper and pencil can also be carried out by a Turing machine." [Copeland and Sylvan 1999]

A better version of the Church-Turing thesis

"Any procedure than can be carried out by an idealised human clerk working mechanically with paper and pencil can also be carried out by a Turing machine." [Copeland and Sylvan 1999]

Question

Why are we talking about "versions" of the Church-Turing thesis?

A better version of the Church-Turing thesis

"Any procedure than can be carried out by an idealised human clerk working mechanically with paper and pencil can also be carried out by a Turing machine." [Copeland and Sylvan 1999]

Question

Why are we talking about "versions" of the Church-Turing thesis?

A/ Because the term 'Church-Turing thesis' was first named, but not defined, by Kleene in 1952 [Jay and Vergara 2004].

Definition

Let a be an arbitrary type and let f and \perp be a terminating and a non-terminating function from a to a, respectively. Plotkin [1977] parallel-or function has the following behaviour:

pOr ::
$$(a \to a) \to (a \to a) \to a \to a$$

pOr $f \perp = f$
pOr $\perp f = f$
pOr $\perp \perp = \perp$

^{*}http://hackage.haskell.org/package/unamb .

Definition

Let a be an arbitrary type and let f and \perp be a terminating and a non-terminating function from a to a, respectively. Plotkin [1977] parallel-or function has the following behaviour:

pOr ::
$$(a \to a) \to (a \to a) \to a \to a$$

pOr $f \perp = f$
pOr $\perp f = f$
pOr $\perp \perp = \perp$

Haskell implementation

See the unamb function from the unambiguous choice library.*

^{*}http://hackage.haskell.org/package/unamb .

Definition

From Sun's Multithreaded Programming Guide:*

"**Parallelism:** A condition that arises when at least two threads are executing simultaneously."

"**Concurrency:** A condition that exists when at least two threads are making progress. A more generalized form of parallelism that can include time-slicing as a form of virtual parallelism."

^{*}https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html .

Definition

From Sun's Multithreaded Programming Guide:*

"**Parallelism:** A condition that arises when at least two threads are executing simultaneously."

"**Concurrency:** A condition that exists when at least two threads are making progress. A more generalized form of parallelism that can include time-slicing as a form of virtual parallelism."

Question

Are we talking about a parallel or concurrent function?

^{*}https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html .

Theorem

The parallel-or function is an effectively calculable function which is not λ -definable [Plotkin 1977].*

^{*}See, also, Turner [2006].

Church's δ Function

Definition

Let Δ be the set of λ -terms, let \equiv be the syntactic identity on λ -terms and let M and N be two combinators in β -normal form. Church's δ function is defined by

$$\delta MN = \begin{cases} \mathsf{true}, & \text{if } M \equiv N; \\ \mathsf{true}, & \text{if } M \not\equiv N. \end{cases}$$

Theorem

Church's δ function is not λ -definable [Barendregt 2004, Corollary 20.3.3, p. 520].

Extensions of Lambda Calculus

Jay and Vergara [2017] wrote (emphasis is ours):

"For over fifteen years, the lead author has been developing calculi that are more expressive than λ -calculus, beginning with the constructor calculus [8], then pattern calculus [2,7,3], SF-calculus [6] and now λ SF-calculus [5]...

[The] λSF -calculus is able to query programs expressed as λ -abstractions, as well as combinators, something that is beyond pure λ -calculus.

In particular, we have proved (and verified in Coq [4]) that equality of closed normal forms is definable within λSF -calculus."

Extensions of Lambda Calculus

Jay and Vergara [2017] also stated the following corollaries:

- 1. Church's δ is λSF -definable.
- 2. Church's δ is λ -definable.
- 3. Church's δ is not λ -definable.

Question

Do Plotkin's parallel-or function or Church's δ function—which are effectively calculable functions but they are not λ -definable functions—contradict the Church-Turing thesis?

Question

Do Plotkin's parallel-or function or Church's δ function—which are effectively calculable functions but they are not λ -definable functions—contradict the Church-Turing thesis?

A/ No! But we need a better version of the Church-Turing thesis.

Definition

A function f is a **number-theoretical function** iff

 $f: \mathbb{N}^k \to \mathbb{N}, \text{ with } k \in \mathbb{N}.$

Definition

A function f is a **number-theoretical function** iff

 $f: \mathbb{N}^k \to \mathbb{N}, \text{ with } k \in \mathbb{N}.$

Theorem

The following sets are coextensive:

- i) λ -definable number-theoretical functions,
- ii) number-theoretical functions computable by a Turing machine and
- iii) general recursive functions.

Remark

The above theorem is historically precise as pointed out in [Jay and Vergara 2004].

A better version of the Church-Turing thesis

We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working mechanically with paper and pencil can also be computed by a Turing machine.

A better version of the Church-Turing thesis

We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working mechanically with paper and pencil can also be computed by a Turing machine.

Remark

Jay and Vergara [2004, 2017] also negatively answer the question under discussion stating other versions of the Church-Turing thesis.

References

- Barendregt, H. P. [1984] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on p. 28).
- Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of Theoretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT Press. Chap. 7. DOI: 10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 14).
- Church, Alonzo (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report (Abstract). Bulletin of the American Mathematical Society 41.5, pp. 332–333. DOI: 10.1090/ S0002-9904-1935-06102-6 (cit. on p. 14).
- (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics 58.2, pp. 345–363. DOI: 10.2307/2371045 (cit. on pp. 14, 19).
- Copeland, B. Jack (2002). Hypercomputation. Minds and Machines 12.4, pp. 461–502. DOI: 10. 1023/A:1021105915386 (cit. on p. 19).
 - Copeland, B. Jack and Sylvan, Richard (1999). Beyond the Universal Turing Machine. Australasian Journal of Philosophy 77.1, pp. 44–66. DOI: 10.1080/00048409912348801 (cit. on pp. 20–22).

References

- Galton, Antony (2006). The Church-Turing Thesis: Still Valid after All These Years? Applied Mathematics and Computation 178.1, pp. 93–102. DOI: 10.1016/j.amc.2005.09.086 (cit. on p. 18).
 - Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Introduction. Cambridge University Press (cit. on p. 9).
 - Hopcroft, John E., Motwani, Rajeev and Ullman, Jefferey D. [1979] (2007). Introduction to Automata theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 18).
 - Jay, Barry and Vergara, Jose (2004). Confusion in the Church-Turing Thesis. Draft version. URL: https://arxiv.org/abs/1410.7103 (cit. on pp. 20–22, 33–36).
 - (2017). Conflicting Accounts of λ -Definability. Journal of Logical and Algebraic Methods in Programming 87, pp. 1–3. DOI: 10.1016/j.jlamp.2016.11.001 (cit. on pp. 29, 30, 35, 36).
- Plotkin, G. D. (1977). LCF Considered as a Programming Language. Theoretical Computer Science 5.3, pp. 223–255. DOI: 10.1016/0304-3975(77)90044-5 (cit. on pp. 23, 24, 27).
- Soare, Robert I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic 2.3, pp. 284–321. DOI: 10.2307/420992 (cit. on pp. 14, 19).

References

- Turing, Alan M. (1936–1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceeding of the London Mathematical Society s2-42, pp. 230–265. DOI: 10. 1112/plms/s2-42.1.230 (cit. on p. 19).
- Turner, David (2006). Church's Thesis and Functional Programming. In: Church's Thesis After 70 Years. Ed. by Olszewski, Adam, Woleński, Jan and Janusz, Robert. Ontos Verlag, pp. 518–544. DOI: 10.1515/9783110325461.518 (cit. on p. 27).

Thanks!