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Motivation

Question
Does parallelism increase the set of functions that can be computed?
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Abstract/Outline

It is accepted that the λ-calculus is a model of computation. It is also known that Plotkin’s
parallel-or function or Church’s δ function are not λ-definable. We discuss if some extensions
of the λ-calculus, where these functions are definable, contradict the Church-Turing thesis.
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Lambda Calculus

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics .
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https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html


Lambda Calculus

Some remarks
A formal system invented by Church around 1930s.
The goal was to use the λ-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Model of computation.
A free-type functional programming language.
λ-notation (e.g., anonymous functions and currying).
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Lambda Calculus

Informally

λ-calculus Example Represent
Variable x x

Abstraction λx.x2 + 1 f(x) = x2 + 1
Application (λx.x2 + 1)3 f(3)
β-reduction (λx.x2 + 1)3 =β x2 + 1[ x := 3 ] ≡ 10 f(3) = 10

Definition
The set of λ-terms can be defined by an abstract grammar.

t ::= x | t t | λx.t
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Lambda Calculus
Conventions and syntactic sugar

The symbol ‘≡’ denotes the syntactic identity.
Outermost parentheses are not written.
Application has higher precedence, i.e.,

λx.MN ≡ (λx.(MN)).

Application associates to the left, i.e.,

MN1 . . . Nk ≡ (. . . ((MN1)N1) . . . Nk).

Abstraction associates to the right, i.e.,

λx1x2 . . . xn.M ≡ λx1.λx2. . . . λxn.M

≡ (λx1.(λx2.(. . . (λxn.M) . . . ))).
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Lambda Calculus
Example
Some λ-terms.

xx (self-application)

I ≡ λx.x (identity operator)

true ≡ λxy.x

false ≡ λxy.y

zero ≡ λfx.x

succ ≡ λnfx.f(nfx)

λf.V V , where V ≡ λx.f(xx) (fixed-point operator)

Ω ≡ ww, where ω ≡ λx.xx.
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Lambda Calculus

Definition
A variable x occurs free in M if x is not in the scope of λx. Otherwise, x occurs bound.

Notation
The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes, is denoted by M [ x := N ].∗

∗See, e.g., Hindley and Seldin [2008, Definition 1.12].
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Lambda Calculus

Definition
A combinator (or closed λ-term) is a λ-term without free variables.

Convention
A combinator called for example succ will be denoted by succ.

Remark
The programs in a programming language based on λ-calculus are combinators.
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Lambda Calculus

Conversion rules
The functional behaviour of the λ-calculus is formalised through of their conversion rules:

λx.N =α λy.(N [ x := y ]) (α-conversion)

(λx.M)N =β M [ x := N ] (β-conversion)

λx.Mx =η M (η-conversion)
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Lambda Calculus

Example
Some examples of β-equality (or β-convertibility).

I M =β M

succ zero =β λfx.fx ≡ one

succ one =β λfx.f(fx) ≡ two

Ω ≡ (λx.xx)(λx.xx) =β Ω =β Ω =β Ω . . .
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Lambda Calculus

Definition
A β-redex is a λ-term of the form (λx.M)N .

Definition
A λ-term which contains no β-redex is in β-normal form (β-nf).

Definition
A λ-term N is a β-nf of M (or M has the β-nf M) iff N is a β-nf and M =β N .
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Lambda Calculus

Theorem
Church [1935, 1936] proved that the set

{M ∈ λ-term | M has a β-normal form}

is not computable.∗ This was the first not computable (undecidable) set ever.†

∗We use the term ‘computable‘ rather than ‘recursive‘ following to Soare [1996].
†See also Barendregt [1990].
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The Church-Turing Thesis

Alan Mathison Turing (1912 – 1954)∗

∗Figures sources: Wikipedia and National Portrait Gallery .
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https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html


The Church-Turing Thesis

Stephen Cole Kleene (1909 – 1994)∗

∗Figures sources: MacTutor History of Mathematics and Oberwolfach.
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http://www-history.mcs.st-andrews.ac.uk/Biographies/Kleene.html
https://opc.mfo.de/detail?photo_id=2122


The Church-Turing Thesis

Theorem
The following sets are coextensive:

i) λ-definable functions,
ii) functions computable by a Turing machine and
iii) general recursive functions.

17/40



The Church-Turing Thesis

Common versions of the Church-Turing thesis

“A function is computable (effectively calculable) if and only if there is a Turing
machine which computes it.” [Galton 2006, p. 94]

“The unprovable assumption that any general way to compute will allow us compute
only the partial-recursive functions (or equivalently, what Turing machines or modern-
day computers can compute) is know as Church’s hypothesis or the Church-Turing
thesis.” [Hopcroft, Motwani and Ullman 2007, p. 236]
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The Church-Turing Thesis

Historical remark
The Church-Turing thesis was not stated by Church nor Turing (they stated definitions) but by
Kleene.∗

An imprecision
Church [1936] and Turing [1936–1937] definitions were in relation to a computor (human com-
puter).

∗See, e.g., Soare [1996] and Copeland [2002].
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The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan 1999]

Question
Why are we talking about “versions” of the Church-Turing thesis?

A/ Because the term ’Church-Turing thesis’ was first named, but not defined, by Kleene in
1952 [Jay and Vergara 2004].
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Plotkin’s parallel-or Function

Definition
Let a be an arbitrary type and let f and ⊥ be a terminating and a non-terminating function
from a to a, respectively. Plotkin [1977] parallel-or function has the following behaviour:

pOr :: (a → a) → (a → a) → a → a

pOr f ⊥ = f

pOr ⊥ f = f

pOr ⊥ ⊥ = ⊥

Haskell implementation
See the unamb function from the unambiguous choice library.∗

∗http://hackage.haskell.org/package/unamb .
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Plotkin’s parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:∗

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.
A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”

Question
Are we talking about a parallel or concurrent function?

∗https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html .
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Plotkin’s parallel-or Function

Theorem
The parallel-or function is an effectively calculable function which is not λ-definable [Plotkin
1977].∗

∗See, also, Turner [2006].
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Church’s δ Function

Definition
Let ∆ be the set of λ-terms, let ≡ be the syntactic identity on λ-terms and let M and N be
two combinators in β-normal form. Church’s δ function is defined by

δMN =
{

true, if M ≡ N ;
true, if M ̸≡ N.

Theorem
Church’s δ function is not λ-definable [Barendregt 2004, Corollary 20.3.3, p. 520].
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Extensions of Lambda Calculus

Jay and Vergara [2017] wrote (emphasis is ours):

“For over fifteen years, the lead author has been developing calculi that are more
expressive than λ-calculus, beginning with the constructor calculus [8], then pattern
calculus [2,7,3], SF -calculus [6] and now λSF -calculus [5]. . .

[The] λSF -calculus is able to query programs expressed as λ-abstractions, as well as
combinators, something that is beyond pure λ-calculus.

In particular, we have proved (and verified in Coq [4]) that equality of closed normal
forms is definable within λSF -calculus.”
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Extensions of Lambda Calculus

Jay and Vergara [2017] also stated the following corollaries:
1. Church’s δ is λSF -definable.
2. Church’s δ is λ-definable.
3. Church’s δ is not λ-definable.
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Discussion

Question
Do Plotkin’s parallel-or function or Church’s δ function—which are effectively calculable
functions but they are not λ-definable functions—contradict the Church-Turing thesis?

A/ No! But we need a better version of the Church-Turing thesis.
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Discussion

Definition
A function f is a number-theoretical function iff

f : Nk → N, with k ∈ N.

Theorem
The following sets are coextensive:

i) λ-definable number-theoretical functions,
ii) number-theoretical functions computable by a Turing machine and
iii) general recursive functions.

Remark
The above theorem is historically precise as pointed out in [Jay and Vergara 2004].
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Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working
mechanically with paper and pencil can also be computed by a Turing machine.

Remark
Jay and Vergara [2004, 2017] also negatively answer the question under discussion stating other
versions of the Church-Turing thesis.
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