Computability and Parallelism

Andrés Sicard-Ramirez

Ciclo de Conferencias
Centro de Computacién Cientifica Apolo
Universidad EAFIT
2018-09-19

Motivation

Question
Does parallelism increase the set of functions that can be computed?

2/40

Abstract/Outline

It is accepted that the A-calculus is a model of computation. It is also known that Plotkin's
parallel-or function or Church’s § function are not A-definable. We discuss if some extensions
of the A-calculus, where these functions are definable, contradict the Church-Turing thesis.

3/40

Lambda Calculus

Alonzo Church (1903 — 1995)*

*Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics .
4/40

https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Lambda Calculus

Some remarks
@ A formal system invented by Church around 1930s.
The goal was to use the A-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Model of computation.

A free-type functional programming language.

A-notation (e.g., anonymous functions and currying).

5/40

Lambda Calculus

Informally
A-calculus Example Represent
Variable T x
Abstraction A\z.z? +1 flx) =22 +1
Application (A\z.z% +1)3 f(3)
B-reduction (A\z.2? +1)3=g22+1[z:=3]=10 f(3)=10
Definition

The set of A-terms can be defined by an abstract grammar.

tu=x|tt]| Azt

6/40

Lambda Calculus

Conventions and syntactic sugar
@ The symbol ‘=" denotes the syntactic identity.
@ Outermost parentheses are not written.

@ Application has higher precedence, i.e.,

Ax.MN = (Az.(MN)).

Application associates to the left, i.e.,
@ Abstraction associates to the right, i.e.,

AL1Z2 ... Tn. M = Ax1.AT9. ... Appy. M

= (Az1.(Az2.(... Azp.M)...))).

7/40

Lambda Calculus

Example
Some A-terms.

e zx (self-application)
e | = \z.z (identity operator)

e true = \xy.x

false = Axy.y

zero = Afr.x

succ = Anfz.f(nfx)

Af.VV, where V = Az. f(zx) (fixed-point operator)

o) = ww, where w = \z.zx.

8/40

Lambda Calculus

Definition
A variable x occurs free in M if x is not in the scope of Axz. Otherwise, x occurs bound.

Notation

The result of substituting NV for every free occurrence of x in M, and changing bound variables
to avoid clashes, is denoted by M|z := N |.*

*See, e.g., Hindley and Seldin [. Definition 1.12].

9/40

Lambda Calculus

Definition

A combinator (or closed A-term) is a A-term without free variables.

Convention

A combinator called for example succ will be denoted by succ.

Remark

The programs in a programming language based on A-calculus are combinators.

10/40

Lambda Calculus

Conversion rules

The functional behaviour of the A-calculus is formalised through of their conversion rules:

Ax.N =4 \y.(N[z :=vy]) (a-conversion)
(Ax.M)N =5 M|z := N] (/-conversion)
o.Mz =, M (n-conversion)

11/40

Lambda Calculus

Example

Some examples of S-equality (or S-convertibility).

o | M=gM
@ succ zero =g Afx.fx = one
@ succone =g Afz.f(fx) = two

0 Q= (Azar)(Avaoxr)=3Q=0=50...

12/40

Lambda Calculus

Definition

A (B-redex is a A-term of the form (Az.M)N.

Definition

A A-term which contains no [-redex is in B-normal form (/3-nf).

Definition

A A-term N is a B-nf of M (or M has the B-nf M) iff N is a f-nf and M =5 N.

13/40

Lambda Calculus

Theorem

Church [, | proved that the set

{M € M-term | M has a S-normal form}

is not computable.* This was the first not computable (undecidable) set ever.f

*We use the term ‘computable’ rather than ‘recursive’ following to Soare | I
TSee also Barendregt | I

14/40

The Church-Turing Thesis

Alan Mathison Turing (1912 — 1954)*

*Figures sources: Wikipedia and National Portrait Gallery .
15/40

https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

The Church-Turing Thesis

Stephen Cole Kleene (1909 — 1994)*

*Figures sources: MacTutor History of Mathematics and Oberwolfach.
16/40

http://www-history.mcs.st-andrews.ac.uk/Biographies/Kleene.html
https://opc.mfo.de/detail?photo_id=2122

The Church-Turing Thesis

Theorem
The following sets are coextensive:
i) A-definable functions,
ii) functions computable by a Turing machine and

iii) general recursive functions.

17/40

The Church-Turing Thesis

Common versions of the Church-Turing thesis

“A function is computable (effectively calculable) if and only if there is a Turing
machine which computes it.” [Galton 2006, p. 94]

“The unprovable assumption that any general way to compute will allow us compute
only the partial-recursive functions (or equivalently, what Turing machines or modern-
day computers can compute) is know as Church’s hypothesis or the Church-Turing
thesis.” [Hopcroft, Motwani and Ullman 2007, p. 236]

18/40

The Church-Turing Thesis

Historical remark

The Church-Turing thesis was not stated by Church nor Turing (they stated definitions) but by
Kleene.*

An imprecision

Church | | and Turing | | definitions were in relation to a computor (human com-
puter).

*See, e.g., Soare [1996] and Copeland [2002].
19/40

The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan 1999]

20/40

The Church-Turing Thesis

A better version of the Church-Turing thesis
“Any procedure than can be carried out by an idealised human clerk working mechan-

ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan |

Question

Why are we talking about “versions” of the Church-Turing thesis?

21/40

The Church-Turing Thesis

A better version of the Church-Turing thesis

“Any procedure than can be carried out by an idealised human clerk working mechan-

ically with paper and pencil can also be carried out by a Turing machine.” [Copeland
and Sylvan |

Question

Why are we talking about “versions” of the Church-Turing thesis?

A/ Because the term 'Church-Turing thesis’ was first named, but not defined, by Kleene in
1952 [Jay and Vergara]

22/40

Plotkin's parallel-or Function
Definition

Let a be an arbitrary type and let f and 1 be a terminating and a non-terminating function
from a to a, respectively. Plotkin [| parallel-or function has the following behaviour:

pOr: (a—a)— (a—a) v a—a

pOr f L =f
pOr L f=f
pOr L 1L =1

23/40

http://hackage.haskell.org/package/unamb

Plotkin's parallel-or Function

Definition

Let a be an arbitrary type and let f and 1 be a terminating and a non-terminating function
from a to a, respectively. Plotkin [| parallel-or function has the following behaviour:

pOr: (a—a)— (a—a) v a—a

pOr f L =f
pOr L f=f
pOr L 1L =1

Haskell implementation

See the unamb function from the unambiguous choice library.*

24/40

http://hackage.haskell.org/package/unamb

Plotkin's parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:*

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.
A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”

25/40

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Plotkin's parallel-or Function

Definition
From Sun’s Multithreaded Programming Guide:*

“Parallelism: A condition that arises when at least two threads are executing simul-
taneously.”

“Concurrency: A condition that exists when at least two threads are making progress.

A more generalized form of parallelism that can include time-slicing as a form of virtual
parallelism.”

Question

Are we talking about a parallel or concurrent function?

26/40

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Plotkin's parallel-or Function

Theorem

The parallel-or function is an effectively calculable function which is not A-definable [Plotkin

].*

*See, also, Turner | I
27/40

Church's § Function

Definition
Let A be the set of A\-terms, let = be the syntactic identity on A-terms and let M and N be
two combinators in 8-normal form. Church’s § function is defined by

true, if M = N;
OMN =
true, if M # N.
Theorem
Church’s § function is not A-definable [Barendregt , Corollary 20.3.3, p. 520].

28/40

Extensions of Lambda Calculus

Jay and Vergara | | wrote (emphasis is ours):

“For over fifteen years, the lead author has been developing calculi that are more
expressive than \-calculus, beginning with the constructor calculus [8], then pattern
calculus [2,7,3], SF-calculus [6] and now ASF-calculus [5]. ..

[The] \SF-calculus is able to query programs expressed as \-abstractions, as well as
combinators, something that is beyond pure A-calculus.

In particular, we have proved (and verified in Coq [4]) that equality of closed normal
forms is definable within A\SF'-calculus.”

29/40

Extensions of Lambda Calculus

Jay and Vergara | | also stated the following corollaries:
1. Church’s 9 is AS F-definable.
2. Church’s § is A-definable.
3. Church’s § is not A-definable.

30/40

Discussion

Question

Do Plotkin's parallel-or function or Church’s § function—which are effectively calculable
functions but they are not A-definable functions—contradict the Church-Turing thesis?

31/40

Discussion

Question

Do Plotkin's parallel-or function or Church’s § function—which are effectively calculable
functions but they are not A-definable functions—contradict the Church-Turing thesis?

A/ No! But we need a better version of the Church-Turing thesis.

32/40

Discussion

Definition
A function f is a number-theoretical function iff

f:NF 5 N, with k € N.

33/40

Discussion

Definition

A function f is a number-theoretical function iff
f:NF 5 N, with k € N.

Theorem
The following sets are coextensive:
i) A-definable number-theoretical functions,

ii) number-theoretical functions computable by a Turing machine and
iii) general recursive functions.

Remark

The above theorem is historically precise as pointed out in [Jay and Vergara

34/40

Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:

Any number-theoretical function than can be computed by an idealised human clerk working
mechanically with paper and pencil can also be computed by a Turing machine.

35/40

Discussion

A better version of the Church-Turing thesis
We should define the Church-Turing thesis by:
Any number-theoretical function than can be computed by an idealised human clerk working

mechanically with paper and pencil can also be computed by a Turing machine.

Remark

Jay and Vergara | : | also negatively answer the question under discussion stating other
versions of the Church-Turing thesis.

36/40

References

W Barendregt, H. P. [1984] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition,
6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on
p. 28).

B Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of The-
oretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT
Press. Chap. 7. DOI: (cit. on p. 14).

@ Church, Alonzo (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report
(Abstract). Bulletin of the American Mathematical Society 41.5, pp. 332-333. DpoOL:

(cit. on p. 14).
[— (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Math-
ematics 58.2, pp. 345-363. DOL: (cit. on pp. 14, 19).
[4 Copeland, B. Jack (2002). Hypercomputation. Minds and Machines 12.4, pp. 461-502. DOI:
(cit. on p. 19).
@ Copeland, B. Jack and Sylvan, Richard (1999). Beyond the Universal Turing Machine. Australasian
Journal of Philosophy 77.1, pp. 44-66. DOTI: (cit. on pp. 20-22).

37/40

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.2307/2371045
https://doi.org/10.1023/A:1021105915386
https://doi.org/10.1023/A:1021105915386
https://doi.org/10.1080/00048409912348801

References

[4 Galton, Antony (2006). The Church-Turing Thesis: Still Valid after All These Years? Applied Math-
ematics and Computation 178.1, pp. 93-102. por: (cit. on p. 18).

Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Intro-
duction. Cambridge University Press (cit. on p. 9).

>

¥ Hopcroft, John E., Motwani, Rajeev and Ullman, Jefferey D. [1979] (2007). Introduction to Auto-
mata theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 18).

El Jay, Barry and Vergara, Jose (2004). Confusion in the Church-Turing Thesis. Draft version. URL:

(cit. on pp. 20-22, 33-36).

[— (2017). Conflicting Accounts of A-Definability. Journal of Logical and Algebraic Methods in
Programming 87, pp. 1-3. DOL: (cit. on pp. 29, 30, 35, 36).

[Plotkin, G. D. (1977). LCF Considered as a Programming Language. Theoretical Computer Science
5.3, pp. 223-255. por: (cit. on pp. 23, 24, 27).

[Soare, Robert I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic 2.3, pp. 284—

, 19).

321. por: (cit. on pp.

38/40

https://doi.org/10.1016/j.amc.2005.09.086
https://arxiv.org/abs/1410.7103
https://doi.org/10.1016/j.jlamp.2016.11.001
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.2307/420992

References

El Turing, Alan M. (1936-1937). On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceeding of the London Mathematical Society s2-42, pp. 230-265. DOTI:
(cit. on p. 19).
[4 Turner, David (2006). Church's Thesis and Functional Programming. In: Church’s Thesis After 70
Years. Ed. by Olszewski, Adam, Wolenski, Jan and Janusz, Robert. Ontos Verlag, pp. 518-544.
DOL: (cit. on p. 27).

39/40

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1515/9783110325461.518

Thanks!

