
Integrating an interactive proof assistant
with automatic theorem provers

Andrés Sicard-Ramı́rez1

(joint work with Ana Bove2 and Peter Dybjer2)

1Universidad EAFIT
2Chalmers University of Technology

Foro de investigación y docencia
Universidad EAFIT
September 29, 2010

Abstract

Interactive proof assistants are interactive systems for writing and checking
proofs which can be used for to write correct programs by construction (under
the Curry-Howard isomorphism). Proof assistants based on higher-order logics
usually lack a good support of proof automation. We are developing a tool in
which users of the Agda proof assistant obtain support from (first-order logic)
automatic theorem provers (e.g. Eprover, Equinox or Metis).

2

Reasoning about programs: the languages

A natural language
(the problem)

vvlllllllllllll

))RRRRRRRRRRRRRR

A specification
language

//

((RRRRRRRRRRRRR

A programming logic //oo

��

A programming
language

oo

uullllllllllllll

Type theory
(an unified language)

3

What is a type?

• A type is a set of values (and operations on them).

• Types as ranges of significance of propositional functions.1 In modern ter-
minology, types are domains of predicates.

Example. P (0) ∧ (∀x.P (x)→ P (succ(x)))→ ∀x.P (x) make sense only
when P is a predicate over natural numbers (i.e. P : N→ {True, False})

• A type system is a syntactic method for automatically checking the absence
of certain erroneous behaviors by classifying program phrases according to
the kinds of values they compute.2

• A type is an approximation of a dynamic behavior that can be derived from
the form of an expression.3

1B. Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, 30(3):222–262, 1908.

2B. C. Pierce. Types and programming languages. The MIT Press, 2002.
3O. Kiselyov and C. chieh Shan. Interpreting types as abstract values. Formosan Summer

School on Logic, Language and Computacion (FLOLAC ’08), 2008.

4

Type system expressibility vs programming
logic strength

Type system expressibility

P
ro

gr
am

m
in

g
lo

gi
c

st
re

n
gt

h

C, Fortran

λ-calculus

Haskell

Type theory

(Agda, Coq)

5

Martin-Löf’s type theory: Types and terms

Per Martin-Löf. Swedish logician,
philosopher, and mathematician.

Type A Term a : A
A is a set a is an element of the set A A 6= ∅
A is a proposition a is a proof (construction) of the

proposition A
A is true

A is a problem a is a method of solving the problem
A

A is solvable

A is a specification a is a program than meets the spec-
ification A

A is satisfiable

6

The proof assistant Agda

Curry-Howard
correspondence

formulas = types
proofs = programs

��

Dependent types

��

Constructivism

��

Martin-Löf’s type theory

��

Agda

xx
##Dependently typed

functional programming
language

Interactive
proof assistant

7

Proof assistants and automatic theorem
provers

Proof assistants (most)

• Higher order-logic

• Interactive (more user effort)

• Expressive types systems

• Complex developments

• Response from seconds to minutes

Automatic theorem provers (ATPs)
(most)

• First-order logic

• Automatic

• Untyped

• One-shot problems

• Response from seconds to hours

8

Proof assistants and automatic theorem
provers

Proof assistants (most)

• Higher order-logic

• Interactive (more user effort)

• Expressive types systems

• Complex developments

• Response from seconds to minutes

Automatic theorem provers (ATPs)
(most)

• First-order logic

• Automatic

• Untyped

• One-shot problems

• Response from seconds to hours

⇒ Combination of automatic and interactive theorem proving

8

Proof assistants and automatic theorem
provers

Proof assistants (most)

• Higher order-logic

• Interactive (more user effort)

• Expressive types systems

• Complex developments

• Response from seconds to minutes

Automatic theorem provers (ATPs)
(most)

• First-order logic

• Automatic

• Untyped

• One-shot problems

• Response from seconds to hours

⇒ Combination of automatic and interactive theorem proving

Example (Agda and ATPs proofs). We will see proofs by induction, pattern
matching and using equational reasoning.

8

Overview: the agda2atp tool

Agda users obtain support from first-order ATPs

Features:

• Agda: The high level proofs steps (introduction of hypothesis, case analysis,
induction steps, etc.)

• ATPs: The “trivial” proofs steps

• The ATPs are called on users’ marked conjectures

• The ATPs are called after the Agda type-checking is finished

9

Overview: the agda2atp tool

Agda users obtain support from first-order ATPs

Features:

• Agda: The high level proofs steps (introduction of hypothesis, case analysis,
induction steps, etc.)

• ATPs: The “trivial” proofs steps

• The ATPs are called on users’ marked conjectures

• The ATPs are called after the Agda type-checking is finished

What we did?

1. To modify Agda to accept the users’ marked conjectures

2. To translate the required Agda internal types to FOL formulas

3. To translate the FOL formulas to ATPs’ inputs

9

Users’ marked conjectures

We added a new built-in pragma to Agda:

{-# ATP axiom myAxiom #-}

{-# ATP definition myDefinition #-}

{-# ATP hint myHypothesis #-}

{-# ATP prove myPostulate h1 h2 ... hn #-}

10

Users’ marked conjectures

We added a new built-in pragma to Agda:

{-# ATP axiom myAxiom #-}

{-# ATP definition myDefinition #-}

{-# ATP hint myHypothesis #-}

{-# ATP prove myPostulate h1 h2 ... hn #-}

Example (Agda and ATPs proofs). We will see the previous proofs using the
ATP pragma.

10

Implementation

Modification of the development version of Agda:

• Obvious modifications (lexer, parser, errors, etc.)

• To change the Agda internal signature

11

Implementation

Modification of the development version of Agda:

• Obvious modifications (lexer, parser, errors, etc.)

• To change the Agda internal signature

The external tool agda2atp:

• Agda has a lot features (implicit arguments, η-conversion rules, where clauses,
etc.)

• Using Agda as an Haskell library (Agda has not a stable API)

• Source: Agda interface files (*.agdai)

• Target: TPTP

• ATPs supported: Eprover, Equinox, and Metis

11

Related work

External, internal or mix approach

12

Related work

External, internal or mix approach

• Andreas Abel, Thierry Coquand and Ulf Norell (2005)

FOL plug-in to the Gandalf system for a previous and experimental version
of Agda called AgdaLight (external approach)

•Makoto Takeyama (2009)

Integration of Agda with external tools using Agda capability to generate
an executable Haskell program (mix approach)

• Anton Setzer and Karim Kanso (2010)

Combination of automated and interactive theorem proving using a built-in
pragma (mix approach)

12

Future work

• User interaction? (non interaction with the type-checking)

• Translate a bigger part of Agda? Which one?

13

The translation algorithm (bonus slides)

Source: Agda internal types (simplified)

Types 3 T U ::= S t

Sorts 3 S ::= Set0 | Set1 | . . .
Terms 3 t ::= Var x | Lam λx.t | Pi T (λx.U) | Fun T U

| Def d t∗ | Con c t∗ | Sort S | . . .

14

The translation algorithm (bonus slides)

Source: Agda internal types (simplified)

Types 3 T U ::= S t

Sorts 3 S ::= Set0 | Set1 | . . .
Terms 3 t ::= Var x | Lam λx.t | Pi T (λx.U) | Fun T U

| Def d t∗ | Con c t∗ | Sort S | . . .

Target: First-order predicate logic with equality

Terms t ::= FOLVar x | FOLFun f t∗

Formulas F ::= > | ⊥ | ¬F | F ∧ F | F ∨ F | F ⇒ F | F ⇔ F

| ∀x.F | ∃x.F | Predicate p t∗ | t ≡ t

14

The translation algorithm (cont.)

Algorithm 0.1: typeToFormula(Γ :: Env, T :: Type)

case T

of

(Set0, t)→ termToFormula(Γ, t)
(Set1, t)→ termToFormula(Γ, t)
others → fail

15

The translation algorithm (cont.)

Algorithm 0.2: termToFormula(Γ :: Env, t :: Term)

case t

of



Var x→

if x ∈ Γ
then return (Predicate x [])
else fail

Lam λx.t→

x
′ ← freshVar(Γ)
f ← termToFormula(Γ ∪ {x′}, t)
return (f)

16

Algorithm 0.3: termToFormula(Γ :: Env, t :: Term)

case t

of



Pi T (λx.U)→



x′ ← freshVar(Γ)
f2 ← typeToFormula(Γ ∪ {x′}, U)
case T

of



(Set0,Def d)→
{
- x :: Set0
return (∀x′.f2)

(Set0,Def d t1, . . . , tn)→

- The variable x is a proof term
f1 ← typeToFormula(Γ, T)
return (f1 ⇒ f2)

(Set1, Sort s)→
{
- x :: Set1
return (f2)

others → fail

17

Algorithm 0.4: termToFormula(Γ :: Env, t :: Term)

case t

of



Fun T U →

f1 ← typeToFormula(Γ, T)
f2 ← typeToFormula(Γ, U)
return (f1 ⇒ f2)

Def d []→

if d ∈ {>,⊥}
then return (d)
else return (Predicate d [])

Def d [t]→



if (d == ¬)
then f ← termToFormula(Γ, t); return (¬ f)

else



if d ∈ {∀D, ∃D}

then

f ← termToFormula(Γ, t)
x← freshVar(Γ);
return ((∀/∃) x.f)

else

{
a← termToFOLTerm(Γ, t)
return (Predicate d [a])

18

Algorithm 0.5: termToFormula(Γ :: Env, t :: Term)

case t

of



Def d [t1, t2]→



if d ∈ {∧,∨,⇒,⇔}

then

f1← termToFormula(Γ, t1)
f2← termToFormula(Γ, t2)
return (f1 d f2)

else


a1← termToFOLTerm(Γ, t1)
a2← termToFOLTerm(Γ, t2)
if (d == ≡)

then return (a1 ≡ a2)
else return (Predicate d [a1, a2])

Def d [t1, . . . , tn]→
{
ai ← termToFormula(Γ, ti)
return (Predicate d [a1, . . . , an])

others → fail

19

The translation algorithm (cont.)

Algorithm 0.6: termToFOLTerm(Γ :: Env, t :: Term)

case t

of


Var x→

if x ∈ Γ
then return (FOLVar x)
else fail

Con c [t1, . . . , tn] or Def d [t1, . . . , tn]→ appArgs(Γ, c/d, [t1, . . . , tn])
others → fail

where

appArgs :: Env→ Name→ [Term]→ FOLTerm

20

