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THE PÖSCHL-TELLER POTENTIAL
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RESUMEN
Se construye un algoritmo cuántico de hipercomputación con base en los potenciales
Pöschl-Teller, el álgebra de Lie su(1,1) y una evolución adiabática. Este algoritmo re-
suelve en principio el décimo problema de Hilbert, un problema clásicamente no com-
putable. Este algoritmo es una generalización del algoritmo propuesto por Tien D. Kieu,
con base en el oscilador armónico; y del algoritmo propuesto por los autores, con base en
la caja de potencial infinita.
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ABSTRACT
We constructed an hypercomputational quantum algorithm based on Pöschl-Teller poten-
tials, Lie algebra su(1,1), and an adiabatic evolution. Our algorithm resolves in principle
Hilbert’s tenth problem, a classically non-computable problem. Our algorithm is an
adaptation of Tien D. Kieu’ s algorithm, which is base on quantum harmonic oscillator;
and it is an generalization of our previous algorithm based on the infinite square well.
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Introduction

The purpose of this work is to present an algorithm of quantum hypercomputation à la
Kieu [2] for Hilbert’s tenth problem, which contributes important considerations on the
role that ∞-dimensional unitary irreducible representation (UIR) of dynamical algebras
play in the hypercomputational context. The way to proceed is to substitute Weyl-
Heisenberg algebra realized on quantum harmonic oscillator for non-compact Lie algebra
su(1, 1) realized on Pöschl-Teller potentials (PT) [1]. Furthermore we presented as a case
limit of our algorithm on PT potentials, our hypercomputational algorithm on infinite
square well presented previously [3, 4].

Hilbert’s Tenth Problem and Kieu’s Algorithm

Kieu’s idea is essentially to transform Hilbert’s tenth problem in the realm of the theory
of numbers, into a quantum problem in the realm of the spectral theory and to resolve
this problem using the adiabatic theorem. Kieu’s algorithm incorporates the following
elements: (i) A physical quantum referent, (ii) An algebraic structure realized on the
physical quantum referent, a dynamical algebra, (iii) A codification scheme of the Dio-
phantine equation, (iv) An initialization system of the quantum system, (v) A quantum
adiabatic evolution process, (vi) A measuring procedure of observable quantum, (vii) A
halting criterion and (viii) A decodification scheme to determine the solution to Hilbert
tenth problem.
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PT Potentials

Consider the continuously indexed family of potentials [1]

Vλ,κ(x) =
V0

2

(
λ(λ − 1)
cos2 x/2l

+
κ(κ− 1)
sin2 x/2l

)
, (1)

where 0 ≤ x ≤ πl, the continuous parameters λ, κ > 1 and the coupling constant
V0 = �2/4ml2. The Hamiltonian

H = i2
�2

2m
d2

dx2
+ Vλ,κ(x) − V0

2
(λ+ κ)2, (2)

corresponds to a particle of mass m subject to the interaction of the PT potentials. The
wave function Ψn(x) in the representation of coordinates is defined

Ψn(x) ≡ 〈x | η/2, n〉 , 0 ≤ x ≤ πl, (3)

where η = λ+ κ+ 1 and Hamiltonian’s action over its normalized eigenvalues is

H | η/2, n〉 = En | η/2, n〉 . (4)

The spectrum of values of the energy associated to (2) crucially depends on parameters
λ, κ

En = �ωen(λ, κ), (5)
where ω = �/2ml2, and en(λ, κ) = n(n+λ+κ). The generators of the dynamical algebra
are constructed based on the PT potentials, having as a starting point the spectral
structure defined in (5) and according to the following criteria [1]

K+ |α, n〉 =
√
en+1(λ, κ),K− |α, n〉 =

√
en(λ, κ) |α, n− 1〉 ,K3 |α, n〉 = e′(λ, κ) |α, n〉 ,

(6)
where α = η/2, e′(λ, κ) = en+1(λ, κ) − en(λ, κ), the operators K+,K− y K3 are called
creation, annihilation and Cartan operators respectively. Those operators satisfy the
commutation relations of Lie algebra su(1, 1) given by [1]

[K±,K3] = ∓2K±, [K−,K+] = K3, (7)

which admits the ∞-dimensional UIR (6). Based on the spectrum of the values of the
energy defined in (4-6), the Hamiltonian (2) could be rewritten in the following way
H = �ωK+K− . From (6) a number operator is constructed given by

N = (1/2)(K3 − η), N | η/2, n〉 = n | η/2, n〉 , (8)

where the eigenstates of the number operator N constitute an ortonormal base for a Fock
space. The existence of the dynamical algebra su(1, 1) associated to the PT potentials,
permits the construction of generalized coherent states of Barut-Girardello type. These
states are the eigenvectors of annihilation operator, K− | η/2, z〉 = z | η/2, z〉, where z ∈
C, and η is a positive integer, and are defined by [5]

| η/2, z〉 =
1√
f(z)

∞∑
n=0

zn√
n! (η)n

| η/2, n〉 , (9)

where f(z) =
{
Γ(η) |z|−(η−1) Iη−1(2 |z|)

}
, (η)n is Pochammer’ symbol (η)n = η(η +

1) . . . (η + n − 1), and Iν is the modified Bessel function of first class. The distribution
of probability to the discrete random variable n associted to (9) is

Pn(η/2, z) = f(z)−1 |z|2n

n! (η)n
. (10)

408



REVISTA COLOMBIANA DE FÍSICA, VOL.38, No.1, 2006

The Algorithm

Given a Diophantine equation with k unknowns,

D(x1, . . . , xk) = 0, (11)

based on the Algorithm of Kieu we provides the following quantum algorithm to decide
whether this equation has any non-negative integer solution or not:

1. Construct or simulate a physical process in which a system initially begins from a
state that is a direct product of k coherent states

|ψ(0)〉 =
k⊗

i=1

| ηi/2, zi〉 . (12)

and in which the system is submitted to the action of a Hamiltonian HA(t) dependent
of the time over the interval [0, T ], for a time T

HA(t) =
(

1 − t

T

)
HI +

t

T
HD, (13)

with the initial Hamiltonian HI and the final Hamiltonian HD

HI =
k∑

i=1

(K+i − z∗i )(K−i − zi), HD = (D (N1, . . . , Nk))2 .

2. Measure or estimate, by way of Schrödinger equation with the Hamiltonian HA(t),
the maximum probability of finding the system in a particular multi-particle state in
the chosen time T

Pmax(T ) = max
| {n}〉

| 〈ψ(T ) | {n}〉 |2 = |〈ψ(T ) | {n}0〉|2 , (14)

where | {n}0〉 ( which is direct product of k particular states,
⊗k

i=1

∣∣n0
i

〉
) possesses

the maximum probability amongst the rest of the multi-particle states.

3. If Pmax(T ) ≤ 1/2, increase T and repeat the previous steps. If

Pmax(T ) > 1/2 (15)

then | {n}0〉 is the fundamental state of HD (it is assumed that there is no spectral
degeneration) and the following conclusion is obtained: HD | {n}0〉 = 0, if and only if,
equation (11) has a non-negative integer solution.

In order to satisfy the halting criterion (15), is necessary that Pmax(0) ≤ 1/2. For a η/2
fixed established by the quantum system there is infinities values of z that satisfy that
condition, according to distribution on (10)

Limit Case: The Infinite Square Well

As a limited case of our hypercomputational algorithm à la Kieu on the Pöschl-Teller
potentials, we obtain our hypercomputational algorithm on the infinite square well (ISW)
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presented previously [3, 4]. The explicit infinite-dimensional UIR of the dynamical alge-
bra su(1, 1), of the Fock space associated to the UIR and of the actions of the creation
and annihilation operators over the states of the Fock space, as well as the number oper-
ator and the Barut-Girardello coherent state corresponding to the ISW, are obtained by
replacing η = 3 in the respective expressions of the PT potentials. This way we obtain
our algorithm à la Kieu on the infinite square well.

Conclusions

It is inferred from what has been exposed that Kieu’s algorithm consists of four basic
parts: (i) Codification of the instance to resolve of Hilbert’s tenth problem, (ii) Estab-
lishment of initial conditions, (iii) Evolution from an initial state to a final stage, (iv)
Setting of halting criterion. Part (i) is founded upon a dynamical algebra associated with
the physical referent applied in the description of the algorithm. Part (ii) is established
based on the coherent states and the ladder operators associated to the dynamical al-
gebra of physical system. Part (iii) is based upon an adiabatic quantum computation
regarding unbounded Hamiltonians. Part (iv) requires certain properties from the initial
state based on the distribution of the probability of the coherent states associated with
the dynamical algebra. In the present work we have we have carried out a variation in
the parts (i), (ii) and (iv) with respect to Kieu’s algorithm.
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[3] A. Sicard, J. Ospina, and M. Vélez. Numerical simulations of a possible hypercom-
putational quantum algorithm. In B. Ribeiro et al., editors, Adaptive and Natural
Computing Algorithms. Proc. of the International Conference in Coimbra, Portugal,
pages 272–275. SpringerWienNewYork, 21st - 23rd March 2005.
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