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1 Introduction

The Church-Turing thesis (CT-T) establishes a strong relation between effec-
tively calculable (computable) functions and Turing computable (recursive)
functions, actually, this is not just a relation, this is an equivalence between
them. In section 2 we present a short history about the CT-T. We begin pre-
senting Church’s definition and Turing’s definition for a computable function,
then we mention that Kleene have named these definitions as Church’s thesis
and Turing’s thesis and finally he decided name both of them as CT-T. We
also introduce some the different philosophical interpretations allowed for CT-
T. In section 3 we talk about the possibility of refuting CT-T in two ways: a
weak refutation and strong one. After, we introduce some logic implications
and some possible future considerations from paraconsistent logic point of view.
In section 4 we introduce some misunderstandings in CT-T under perspective
of what can be computed by a machine. Then we present a thesis stronger
than CT-T, called Thesis M, so we can talk about Hypercomputation. Finally,
in section 5 we work over CT-T from quantum computation perspective. We
introduce other thesis stronger than CT-T called Church-Turing principle and
some examples of possible relations between quantum computing and CT-T.

2 Historical and philosophical remarks

We believe that the Church-Turing thesis development has been: Church’s de-
finition, Turing’s definition, Church’s thesis, Turing’s thesis and finally Church-
Turing thesis. Obviously, the historical development has not been a linear his-
tory; its principal protagonists (Alonso Church, Kurt Godel, Stephen Kleene,
Jacques Herbrand, Emil Post, Alan Turing and others) exchanged letters, meet-
ings, conversations and discussions. To present the CT-T in its current context
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we introduce a very simple history about it (we suggest papers [10, 12, 30, 36]
for a detailed history about it).

In the decade of thirties, in contex of Hilbert’s finitist program (in general)
and looking for Entscheidungsproblem’s' solution (in particular), the mathe-
maticians and logicians were looking for a formal meaning to informal notion of
computable (calculable, effectively calculable, algorithmic) function of positive
integers. In other words, they were looking for what is the meaning for the
notion of effective or mechanical method in logic and mathematics.

From mathematical point of view as opposite to mechanical or algorithmic
point of view, Church gave this definition for computable functions:

Church’s definition: “We now define the notion, already discussed, of
an effectively calculable function of positive integers by identifying it with
the notion of a recursive function of positive integers (or of a A-definable
function of positive integers). This definition is thought to be justified
by considerations which follow, so far as positive justification can ever be
obtained for the selection of a formal definition to correspond to intuitive
notion.” [7, p. 3506]

From mechanical and algorithmic point of view, Turing built a Turing ma-
chine (called by him as automatic machine), he defined a function Turing com-
putable if it can be calculated by a Turing machine, he also gave the following

definition for computable functions?:

Turing’s definition: “The “computable” numbers® include all numbers
which would naturally be regarded as computable.” [39, p. 249]

Thanks to the agreement obtained between people who is working on the
problem and the empirical evidence obtained [18], it means, “(1) Every effec-
tively calculable function that has been investigated in this respect has turned
out to be computable by Turing machine; (2) All known methods or operations
for obtaining new effectively calculable functions from given effectively calculable
functions are paralleled by methods for constructing new Turing machines from
given Turing machines; (3) All attempts to give an exact analysis of the intuitive
notion of an effectively calculable function have turned out to be equivalent in
the sense that each analysis offered has been proved to pick out the same class of
functions, namely those that are computable by Turing machine.” [10, p. 4]; we
think that Church’s definition and Turing’s definition earned its thesis’s status:

Church’s thesis and Turing’s thesis: “The thesis of Church and Tur-
ing were not even called “thesis” at all until Kleene (1943, p. 60)* referred

L“By the Entscheidungsproblem of a system of symbolic logic is here understood the pro-
blem to find an effective method by which, given any expression Q in the notation of the
system, it can be determined whether or not Q is provable in the system.” [6, p. 41]

2In reality, Turing paper’s subject [39] was computable numbers, although his works is
directly extended for computable function.

3The number whose decimal representation can be generating progressively by a Turing
machine. [10, p. 9]

4Kleene, S.C. 1943. Recursive predicates and quantifiers. Transactions of the American
Mathematical Society, vol 53. p. 60)

76



to Church’s “definition” as “Thesis I” and the 1952 Kleene® referred to
“Church’s Thesis” and “Turing’s Thesis”.” [36, pp. 295-296]

Becoming a definition in a thesis implies a philosophical jump. This jump
stimulates different interpretations for the Church’s thesis and Turing’s the-
sis (for example, Ramos [26] introduce Nelson’s naturalistic interpretation [20],
Shapiro’s structuralist interpretation [38] and Schanker’s conventionalist inter-
pretation [27]). Every possible interpretation is supported by an ontological
position about mathematical objects and its relation with reality. On the same
direction, some people instead of giving the name of ‘thesis’ to the concept
prefer give names as ‘hypothesis’, ‘working hypothesis’, or ‘principle’ to refer a
Church’s or Turing’s thesis®; in some cases, this names has the same meaning
but in other cases, is not in this way.

Without entering in the question about the ontology dimension of mathe-
matical objects (because this is outside of limits of this paper) and indepen-
dently of the matter of considering Church’s and Turing’s thesis as definitions
(in any philosophical sense), or as empirical or mathematics thesis, we think
that Church’s thesis and Turing’s thesis should have associated a true-value.
This true-value is not known, and although is not possible a positive test, we
thought that if should be possible a negative one.

On the other hand and because of the demonstrations about coexistence
between A-definable functions set, Turing computable functions set and recursive
functions set, Church’s thesis and Turing’s thesis are presented usually as the
Church-Turing thesis:

Church-Turing thesis: “The term ‘Church-Turing thesis’ seems to have
been first introduce by Kleene, with a small flourish of bias in favor of
Church” [10, pp. 3-4]:

‘So Turing’s and Church’s thesis are equivalent. We shall usu-
ally refer to them both as Church’s thesis, or in connection with
that one of its ... version which deal with 'Turing machines’
as the Church-Turing thesis.” (Kleene 1967: 232.)"

About the using of the name ‘Church-Turing thesis’ Soare says:

“Here we also use the phrase “Church-Turing thesis” to refer to the amal-
gamation of the two theses (these and others)® where we identify all in-
formal concepts of Definition 1.1° with one another we identify all the
formal concepts of Definition 1.2'°, and their mathematical equivalents,
with one another and suppress their intensional meanings.” [36, p. 296]

5Kleene, S.C. Introduction to metamathematics. Wolters-Noordhoff Publishing. Gronin-
gen, 1952.

6This situation is the same in relation with the name ‘Church-Turing thesis’.

"Kleene, S.C. 1967. Mathematical Logic. New York: Wiley.

8Church’s thesis and Turing’s thesis.

9Definition 1.1: A function is “computable” (also called “effectively calculable” or simply
“calculable”) if it can be calculated by a finite mechanical procedure. [36, p. 284]

0Definition 1.2: (i) A function is “Turing computable” if it is definable by a Turing machine,
as defined by Turing 1936. [36, p. 285]
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According to Soare explanation, the name ‘Church-Turing thesis’ suppress the
motivation and the intuition behind the Church’s thesis and the Turing’s thesis.
The justification to synthesize Church’s thesis and Turing’s thesis in Church-
Turing thesis is because they have the same formal meanings, it means, the
Turing computable functions and the recursive (A-definable) functions are equi-
valents in the formal dimension.

The introduced situation between Church’s thesis and Turing’s thesis is not
only situation in which, two definitions are formally equivalents but they have
different intensional meanings. In the beginning of quantum mechanics formu-
lations, there was two definitions with this characteristics: Werner Heisenber’s

matrix mechanics and Erwing Scrodinger’s wave mechanics!®.

3 Possible refutations for Church-Turing thesis

Nowadays, agreement exists between almost all logicians and mathematicians
that the Church Turing thesis is correct and even though almost all of them agree
with the impossibility of proving the CT-T [13, 19, 36] because it establishes a
relation between a formal concept (Turing computable functions, general recur-
sive functions) and an intuitive concept (effectively calculable function); some
persons believe that it is possible of refutation. If we think about CT-T as:

A function f is effectively calculable iff function f is Turing computable;

we have two possible ways for refutation. One possibility for refutation is to
eliminate equivalence in one direction, it means:

If a function f is Turing computable do not imply that function f is
effectively calculable.

First possibility of refutation means that we find a Turing computable func-
tion which is not effectively computable, it means that, formal notion of Turing
computable functions is wider than intuitive notion of computable functions [19,
p. 201]. We can call this way of refutation as, the weak refutation because from
definition for Turing computable functions it seems evident that they are effec-
tively calculable functions. Nevertheless, there are Turing computable functions
that we do not believe it is very clear that they are effectively calculable func-
tions.

11In classic mechanics in general and wave mechanics in particular, is frequently recognize
set up modes of vibration on material objects (for example, modes of vibration for a rope
tied in the ends or modes of vibration produced by the sound in a resonant cavity) and idea
by Louis de Broglie of pilot wave associated all matter in motion, they made to germinate in
Erwing Scrodinger toward 1923 the idea of a quantum mechanics in the who the important was
that the electrons set up harmonics modes of vibration in the interior of the atoms. Toward
1926 in hands of Werner Heisenber and his colleagues, appear another quantum mechanics
whit irreconcilable view with previous, for the who the truly important it was the novelty
idea of the quantum jumps and of the discontinuities in the spectrum of some observables of
the atoms, with an added difficulty additional, the impossibility of make to intuition about
images of the atoms [4, 9]
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For example, the Ackermann’s function is a Turing computable function [17,
18]12, but its grows very fast. A(4,2) has 19,728 digits [35], so ;it is possible
calculate, A(4,3)? for instance. Let’s see Harry Smith’s answer:

“T agree that the Ackermann function is “A function to end all functions”.
You asked if I tried A(4,3). Well yes, but my program VPCalc only handles
a value up to about 10'%:932:385:525 314 can only handle 114, 639 decimal
digits in the mantissa. A(4,2) fits my niche well, but A(4,3) is way out
there. It would take more than A(4,2) seconds to compute A(4,3) and the
computer would need more than A(4,2) bits of memory. This cannot be
done in this universe. Remember A(4,2) = 2.00352...E + 19728.” [35].

On the same way, Mendelson introduce the following example:

“Porte '® has a proved an interesting theorem which has, as a result, there
are general recursive function f (z)14 such that, for any general recursive
function g(z), there exist infinitely many numbers x in the range of f such
that, for any argument zo with f(20) = «, the number of steps*® necessary
to compute f(zo0) exceeds g(z). Now, if g grows very fast, say g(z) =

100*
100100 , then it will be impossible to carry out the computation of
f(z0) within the life-span of a human being or probably within the life-
span of the human race.” [19, p. 202]

Then, there are some Turing-computable functions impossible to calculate in
this universe. However, there is agreement in academic community of that
these function are effectively calculable functions, in Mendelson’s words:

“A function is considered effectively computable if its value can be com-
puted in an effective way in a finite number of steps, but there is no bound
on the number of steps required for any given computation. Thus, the fact
that there are effectively computable functions which may not be humanly
computable has nothing to do with Church’s thesis.” [19, p. 202]

In general, we can say that problem of number of steps, there is not problem
for computability, there is a problem for an area called computational complex-
ity [16, 24].

Another possibility for refutation is to eliminate the equivalence in the other
direction, it means:

If a function f is effectively calculable do not imply that function f is
Turing computable.

12This function is defined as:
A0,y) =y +1,
Az +1,0) = A(z, 1),
Az +1,y+1) = Az, A(z + 1,9)).

3Porte, J. Quelques pseudo-paradoxes de la “calculabilité effetive,” Actes du 2¢ Congres
International de Cybernetique, Namur, Belgium, 1960, pp. 332-334

4Namely, any general recursive function with non-recursive range.

1584y, the number of steps in the calculation of the values of f from a system of equations
for the computation of f.
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Second refutation means that we can find an effectively computable function
which can be showed as not a Turing computable function, it means, formal
notion of Turing computable functions is narrow than intuitive notion of com-
putable functions [19, p. 201]. We can call this way of refutation as, the strong
refutation because from definition for Turing computable functions it does not
seem evident that they are all effectively calculable functions.

The fact of finding an effectively computable function that does not be Tur-
ing computable function will have very important results in the current logic.
We hereby present some extracts from the letter sent by Alonso Church to
Jésez Pepis, in relation to Pepis’ implicit proposal of a powerful definition for
computability:

“Therefore to discover a function which was effectively calculable but no
general recursive would imply discovery of an utterly new principle of
logic, not only never before formulated, but never before actually used
in a mathematical proof - since all extant mathematics is formalizable
within the system of Principia, or at least within one of its known ex-
tensions. Moreover this new principle of logic must be of so strange, and
presumably complicated, a kind that its metamathematical expression as
a rule of inference was not general recursive, for this reason, if such a
proposal of a new principle of logic were ever actually made, I should
be inclined to scrutinize the alleged effective applicability of the principle
with considerable care.” [30, pp. 175-176]

Church’s answers is based over relation between effectively calculable functions
and theorems for a system of symbolic logic. We can see this relation as:

“A function y = f(x) of the natural numbers is said to be representable
in a formal system including the arithmetic, if there is a formula ¢(z,y)
in that system such that for any natural numbers m,n and the symbols
1, v in that system representing m, n respectively, if m = f(n) then the
formula ¢(u,v) is provable and if m # f(n) then the negation of ¢(u,v)
is provable. Then, it is well-known that if the system is consistent, the
class of representable functions coincides with the class of recursive func-
tions.” [22, p. 6]

In this case, it is clear Church’s mention of a new principle of logic. However,
we think that relation established (between effectively calculable functions and
theorems of logic) is supported in the consistency of the system of logic used.
Just like a working hypothesis, we believe that a good possibility for working
on the strong refutation is not using a consistent system of logic, but a paracon-
sistent system of logic [3, 11, 25]. We think about a decidable inconsistent first
order predicate calculus in which we can express and solve the halting problem'¢

16We can think the halting problem as: Let M7 be a Turing machine and let « an input
for machine MT . Is there a Turing machine H, such a:

1 iff MT halt with o,

H(MT, 0) = {0 iff MT do not halt with a.

From Turing’s paper [39], do not exist Turing machine H.
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for example, nevertheless for paraconsistent first order predicate calculus known
at the moment, they are undecidable calculus'”.

4 Thesis M: Misunderstanding of Church-Turing
thesis

The Church-Turing thesis is a formal-theoretical thesis (as opposite to concrete-
physical thesis). However, as Jack Copeland point out [10], there are some
misunderstandings of CT-T because some people relation it with the limits of
what can be computed by a machine'®.

We believe that this misunderstanding is because Turing used the term com-
puter for his Turing machines in his initial paper [39]. Nevertheless, how some
people have marked, Turing used the term computer for an “idealized human
calculating in a purely mechanical fashions” [36, p. 292]. Following to Soare!?
we use the term computor for an idealized human calculating and we use the
term computer for a machine (theoretical or physical). So, the Church-Turing
thesis is about computors and not about computers. Copeland introduces this
difference as:

“Gandy (1980)%° is one the few writers to distinguish explicitly between
Turing’s thesis and the stronger proposition that whatever can be calcu-
lated by a machine can be calculated by a Turing machine. Borrowing
Gandy’s terminology, I will call the stronger proposition "Thesis M’.

Thesis M: Whatever can be calculated by a machine (working
on finite data in accordance with a finite program of instruc-
tions) is Turing machine computable.

Thesis M itself admits of two interpretations, according to whether the
phrase ‘can be calculated by a machine’ is taken in the narrow sense of
‘can be calculated by a machine that conforms to the physical laws (if
not to the resource constrains) of the actual world’, or in a wide sense
that abstracts from the issue of whether or not the notional machine in
question could exist in the actual world. The narrow version of the thesis
M is an empirical proposition whose truth-value is unknown. The wide
version of the thesis M is known to be false. Various notional machines
have been described which can calculate functions that are not Turing
machine computable ... 2. [10, pp. 5-6]

17This was affirmed by Graham Priest and Chris Mortensen, in private electronic mail.

18Copeland does to mention about other misunderstandings of Chruch-Turing thesis in
areas as the computational theory of the mind or in cases as process that can be scientifically
explicable [10].

9S0are follows Robin Gandy (Gandy, R. Church’s thesis and principles for mechanisms.
The Kleene symposium, North-Holland, pp. 123 - 148) and Wilfred Sieg (Sieg W. Mechanical
procedures and mathematical experience. Mathematics and mind (A. George, editor), Oxford
University Press. 1994.) [36, p. 291-292]

20Gandy, R. Church’s thesis and principles for mechanisms. The Kleene symposium, North-
Holland, 1980, pg. 123-148)

21In this point, Copeland indicates some papers that describe this machines.
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Models used to demonstrate that wide version of the thesis M is false are
usually called hipercomputation models. This models are continuous models
or infinity models for computation (as opposite to discrete and finite models
used for narrow version of the thesis M). To build a hipercomputation ST
model, usually first is constructed a model T equivalent for Turing machine
and under some modifications, it comes to be a hipercomputation model. To
demonstrate that model ST is a hipercomputation model there are two ways:
(i) To demonstrate that ST is equivalent to other hipercomputation model well
known or (ii) To demonstrate that ST can solve a problem that Turing machine
can not (for example, the halting problem).

Nowadays, there are hipercomputation models from different theories as in-
dicated in following examples. From neural networks theory, Hava Siegelmann
and Eduardo Sontag [31, 33, 34] introduce a neural network model called Analog
Recurrent Neural Network (ARRN), if neurons’s weights are rational numbers
then ARRN is equivalent to Turing machine, but if neurons’s weights are real
numbers then ARRN is a hipercompuation model. From dynamic system theory,
Hava Siegelman [32] introduces a hypercomputation model called Analog Shift
Map. Mike Stannett [37] from X-machine model introduces a hipercomputation
model called Analogous X-Machine (AXM).

On the other hand, models used for working with narrow version of the thesis
M are discrete and finite models. Turing required that computable function were
calculable by finite means [39, p. 231]. Finite means for Turing machines means:
(A) Turing machine’s components are finite: (A1) A Turing machine has finite
states, (A2) A Turing machine has finite alphabet; and (B) Turing machine’s
evolution is finite and local: (B1) Every evolution’s step must depends only on
the current state and the symbol in the observed cell, (B2) A Turing machine
can change one and only one symbol from the tape, in every evolution’s step
and (B3) Turing machine can move only one cell to left or to right from the
observed cell, in every evolution’s step.

We believe that discrete components, finitess and locality are three necessary
conditions to think about the narrow version for thesis M. In this context, we
present the Gandy’s result?2:

“Gandy’s main result is that what can be calculated by a discrete deter-
ministic mechanical device is Turing computable.” [36, p. 296]

“One of the arguments more solid to in favor of the Church’s thesis has
been proposed by R. Gandy, who had demonstrated that the mechanisms
of all the machines building under newtonian mechanics could calculate
only programmable functions®®.” [13, p. 81]

At this moment, we consider important to say that the digital computers
was consider for Turing as computors, it means, digital computers satisfies the
Church-Turing thesis. In Turing’s words:

22Gandy, R. Church’s thesis and principles for mechanisms. The Kleene symposium, North-
Holland, 1980, pp. 123-148)
23We can think about programmable functions as Turing computable functions.

82



“ ‘The idea behind digital computers may be explained by saying that
these machine are intended to carry out any operations which could be
done by human computer.” (Turing 1950:436)%*.” [10, p. 9]

Some people can object us that current digital computers are not mechanical,
because its is electrical. Nevertheless, Turing did not considered this important:

“It gives up frequent importance to the fact that current digital computers
are electrical .... It like Babbage’s machine was not electrical and like
sure sense all digital computers are equivalent, we see that this use of
the electricity could not be of theoretical importance.” [40, p. 21-22], [41,
p. 41]

5 Church-Turing principle: Physical version for
Church-Turing thesis

For Gandy’s result one possibility to work with the narrow version for thesis M
is quantum computing theory. Although, quantum physics works naturally with
continuous objects, current models for quantum computing should be regarded
as a discrete models for computation [2]. Some models for quantum computation
are: (i) Quantum circuits [1, 15, 28] and (ii) Quantum Turing machines [2, 14,
23, 29].

We consider David Deutsch’s paper “Quantum theory, the Church-Turing
principle and the universal quantum computer” as a principal paper about quan-
tum computing. In this paper, Deutsch introduces a personal version for the
Church-Turing thesis called by him, Church-Turing hypothesis:

Church-Turing hypothesis: “Every ‘function which would naturally
be regarded as computable’ can be computed by the universal Turing
machine.” [14, p. 99]

Deutsch proposes to reinterpret ‘function which naturally be regarded as com-
putable’ as ‘function which may in principle be computed a real physical system’;
he also proposes to generalize ‘universal Turing machine’ as a ‘universal model
computing machine operating by finite means’ and he establishes that ‘finitely
realizible physical systems’ must include any physical object upon any experi-
mentation is possible. Then, he presents his physical version of Church-Turing
hypothesis called by him, Church-Turing principle:

Church-Turing principle: “Every finitely realizable physical system
can be perfectly simulated by a universal model computing machine op-
eration by finite means.” [14, p. 99]

Deutsch introduces a general quantum Turing machine, this general quan-
tum Turing machine can be thought as universal quantum Turing machine with
following comnsiderations: Instructions set for a Turing machine determine its

24Turing, A.M. 1950. Computing Machinery and Intelligence. Mind 59, 433-460 (some
Spanish version are [40] and [41]).
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behavior, the same as, temporal evolution operator for a quantum Turing ma-
chine determines its behavior, then, an adequate [instructions set - temporal
evolution operator] transforms a [Turing machine - quantum Turing machine]
in a [universal Turing machine - universal quantum Turing machine]. Deutsch
establishes that universal quantum Turing machine satisfies the Church-Turing
principle:

“... I present a general, fully quantum model form computation. I then
describe the universal quantum computer Q, which is capable of perfectly
simulating every finite, realizible physical system. ... In computing strict
functions from Z to Z it generates precisely the classical recursive functions
C(F) 22 [14, p. 102]

Discrete components, finitess, and locality conditions for quantum Turing
machines are given by: (A) quantum Turing machine’s components are finite:
(A1) quantum Turing machine has finite processor, (A2) quantum Turing ma-
chine has finite alphabet; and (B) quantum Turing machine’s evolution is finite
and local: “(i) only a finite subsystem is in motion during any one step, and
(ii) the motion depends only on the state of a finite subsystem, and (iii) the rule
that specifies that motion can be given finitely in the mathematical sense.” [14,
p. 100]

Although quantum Turing machines can compute only Turing computable
functions, Deutsch claims that Church-Turing principle is stronger than Church-
Turing thesis:

“The statement of the Church-Turing principle is stronger than what is
strictly necessitated by (1.1)2°. Indeed it is so strong that is not satisfied
by Turing’s machine in classical physics. Owing to the continuity of cla-
ssical dynamics, the possible states of a classical system necessarily form a
continuum. Yet there are only countable many ways of preparing a finite
input for F27. Consequently F can not perfectly simulate any classical
dynamics system.” [14, p. 100]

Because the Church-Turing principle is stronger than Church-Turing thesis and
the quantum Turing machine satisfies this principle, should be one problem that
is quantum Turing computable but its not Turing machine. One problem belong
to this category is problem of generate truly random numbers. In relation to
randomness and classical computers, Colin Williams and Scott Cleartwater say:

“Although most modern programming languages contain some kind of
command for generating a “random” number, in reality, they can only
generate “pseudorandom” numbers. These are sequences of numbers that
pass many of the test that a sequence of random numbers would also
pass. But they are not true random numbers, because they are merely the
completely predictable output from a definite function evaluation.” [42,
p. 155]

25 F is Turing’s universal computing machine and C(F) is the Turing computable functions
set.

26The Church-Turing hypothesis.

27 F is Turing’s universal computing machine.
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Generation for random numbers is intrinsic for quantum computing. Deutsch
does it explicit by:

“ Unlike F28, it*® can simulate any finite classical discrete stochastic pro-
cess perfectly.” [14, p. 102]

This problem is very special because if we accept to generate random num-
bers per function, we have pseudorandom numbers. Quantum Turing machines
allows to generate random numbers without the explicit use of a function. 3%
On the other hand, we have indicated some ideas of thinking about Church-
Turing thesis from quantum computing point of view. Conversely, we now
indicate some way of thinking about quantum physics from Church-Turing thesis
point of view. We want to present M. A. Nielsen and Norman Bridge arguments
about limitations for quantum observables, due to Church-Turing thesis.
Paper’s abstract by Nielsen present directly the question:

“We construct quantum mechanical observables and unitary operators
which, if implemented in physical systems as measurements and dynam-
ical evolution, would contradict the Church-Turing thesis which lies at
the foundation of computer science. We conclude that either the Church-
Turing thesis needs revision, or that only restricted classes of observ-
ables may be realized, in principle, as measurements, and that only re-
stricted classes of unitary operators may be realized, in principle, as dy-
namics.” [21, p. 1]

Initially, Nielsen defines a halting observable h using the halting function h(x).3!
Agree with quantum mechanics definition, “the Hermitian operator A is an
observable if this orthonormal system of vectors forms a basis in the state space.”
[8, p. 137]. The halting observable is a Hermitian operator on the state space
of the system, then it is a quantum observable. If his a quantum observable,
its measure has two possibilities [21, p. 2]:

28 F is Turing’s universal computing machine.

29Universal quantum computer.

30We can see how generate a random number from quantum computing. Let |z) be a qubit
in | 0) state and let H be Hadamard operator definite by:

1

H|0>—>\/i

(10) + 1)),

1
H|1l) — —(|0) +|1)).

[1) \/i(l ) +11)

Then, we apply Hadamard operator for qubit |0) and we obtain superposition state
% | 0) + % |1). After, we observe the superposition state. “The act of observation causes

the superposition to collapse into either | 0) or the | 1) state with equal probability. Hence you
can exploit quantum mechanical superposition and indeterminism to simulate a perfectly fair
coin toss.” [42, p. 160]

31Halting observable h and function h(z) are defined as [21, pp. 2-3]:

_ | 1 if program z halts on input z;
h(z)z)(z| and  h(z) = { 0 if program x does not halt on input z.

[]8

h= (1)

z=0
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1. It is possible, in principle, to construct a measuring device capable
of performing a measurement of the observable h.

2. It is not possible, in principle, to construct a measuring device ca-
pable of performing a measurement of the observable h.

Nielsen’s analysis for this two possibilities is:

“Suppose the first possibility is true. Then in order to compute the value
of h(z) one performs the following procedure: Construct the measuring
apparatus to measure h, and prepare the system to be measured in the
state |z). Now perform the measurement. With probability one the result
of the measurement will be h(z). This gives a procedure for computing
the halting function. If one accepts the Church-Turing thesis this is not
an acceptable conclusion, since the halting function is not computable.

Acceptance of the Church-Turing thesis therefore forces us to conclude
that the second option is true, namely, that it is not possible, in principle,
to construct a measuring device capable of performing a measurement of
the observable h. That is, only a limited class of observables correspond
to measurements which may be performed, in principle, on quantum me-
chanical systems.” [21, p. 2]

Then, Nielsen makes a similar analysis to perform an approximated mea-
surement of & and make a similar analysis for the physical realization of unitary
operators as dynamical evolution (under infinite and finite dimensional state
space). In accordance with previous, there are two possibilities: (i) Modifica-
tion of the Church-Turing thesis or (ii) Rethinking observables and evolution
operators for realizible quantum system. Nielsen opinion is:

“It is the author’s conjecture that the Church-Turing thesis is essentially
correct, and that a more satisfactory program is to address the problem of
achieving a sharp characterization of the class of observables and unitary
dynamics which may be realized in physical systems.” [21, p. 3]

Although Masanao Ozawa [22] refutes Nielsen arguments satisfactorily®? we
want to emphasize principal idea behind Nielsen work for us. In this case,
they used the Church-Turing thesis for think once again about some aspects of
quantum computing in particular and quantum physics in general.

6 Final observation

Although we have mentioned some relations between (i) Church-Turing Thesis,
(ii) Thesis M in narrow sense, (iii) Thesis M in wider sense and (iv) Church-
Turing principle; we think it is necessary to establish more relations between (i),

324Tt can be pointed out that Nielsen’s formulation of the measurability of observables does
not respect sufficiently the fact that every measuring apparatus has only finite precision as long
as it can be constructed in a laboratory or it is finitely realizible. .... Under this formulation,
it is proved that the halting observable is measurable, contrary to Nielsen’s argument, without
any contradiction with the Church-Turing thesis.” [22, p. 2]
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(i),

(iii) and (iv). This way of working allow to us a better comprehension of

computability problem which has the simplicity and complexity we hope every
good problems.
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