
Embedding a Logical Theory of Constructions in Agda

Ana Bove Peter Dybjer
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

{bove,peterd}@chalmers.se

Andrés Sicard-Ramı́rez ∗

Department of Fundamental Sciences
EAFIT University

Medellı́n, Colombia
asicard@eafit.edu.co

Abstract
We propose a new way to reason about general recursive functional
programs in the dependently typed programming language Agda,
which is based on Martin-Löf’s intuitionistic type theory. We show
how to embed an external programming logic, Aczel’s Logical The-
ory of Constructions (LTC) inside Agda. To this end we postulate
the existence of a domain of untyped functional programs and the
conversion rules for these programs. Furthermore, we represent the
inductive notions in LTC (intuitionistic predicate logic with equal-
ity, and totality predicates) as inductive notions in Agda. To illus-
trate our approach we specify an LTC-style logic for PCF, and show
how to prove the termination and correctness of a general recursive
algorithm for computing the greatest common divisor of two num-
bers.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ings of programs]: Specifying and Verifying and Reasoning about
Programs–Logics of programs; D.2.4 [Software Engineering]:
Software/Program Verification–Correctness proofs

General Terms Languages, Theory, Verification

Keywords Logical theory of constructions, type theory, general
recursion

1. Introduction
Assume that we want to use a proof assistant for verifying pro-
grams written in a standard functional language such as Haskell
(Peyton Jones 2003), where functions can be defined by general
recursion. What do we do?

The most obvious idea is to build a dedicated proof assistant
tailored for this functional language. For example, the LCF system
(Gordon et al. 1979) could be used in this way, since the terms in
LCF come from a typed lambda calculus with recursive function
definitions and recursive data types, that is, from a core functional
programming language. Recent examples of dedicated proof assis-
tants for functional languages include the Sparkle system for Clean

∗ This research was performed during a research visit to Chalmers Univer-
sity of Technology which was funded by the ALFA network LERnet and
EAFIT University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© 2009 ACM This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in PLPV’09, http://doi.acm.org/10.1145/1481848.
1481857.. . . $5.00

(de Mol et al. 2002), and the Plover system for Haskell (Harrison
and Kieburtz 2005). However, building such a system from scratch
is a formidable task. Not only do we need to decide what logical
rules the system has and build a theorem prover for them, but we
also need to write libraries, user interfaces, provide automatic the-
orem proving support, etc.

Another possibility is to use an existing mature generic proof
assistant such as Isabelle (Paulson 1994), and implement our logic
of functional programs inside it, see for example Dybjer and Sander
(1989). In this paper we shall propose a variation of this approach,
where we implement a logic of general recursive functional pro-
grams inside the proof assistant Agda (Norell 2007; Agda wiki) for
dependent type theory.

The question of encoding general recursive (and possibly par-
tial) functions in a dependent type theory which allows only total
functions has been recently considered by a number of authors. For
example, Bove and Capretta (2005) turn such partial functions into
total ones by adding an extra argument to the function, a termina-
tion witness. Another possibility is to encode functional programs
as relations (Gonzalı́a 2006; Barthe et al. 2006).

However, both these methods have drawbacks and limitations.
One is that you do not verify the general recursive program as it
stands, but an Agda representation of it. Another is that they do
not deal with the general case of verifying all possibly higher order
functional programs.

Here we propose a method which has neither of these draw-
backs. Although we still need to encode a general recursive pro-
gram inside Agda, this encoding does not change the general recur-
sive program much, it only uses the standard representation of an
untyped lambda calculus in a logical framework using higher order
abstract syntax.

We first present a rather standard “external” logic for functional
programs, Aczel’s Logical Theory of Constructions (LTC). (The
term “external” program logics comes from Girard (1986) who
contrasts it to the “integrated” logics arising from the identification
of programs and proofs on which systems like Agda and Coq
build.) We then show how to encode LTC in Agda.

The original purpose of LTC-style logics (there are several)
was as targets for lambda calculus (or realisability) interpretations
of Martin-Löf type theory, see Aczel (1977), Aczel et al. (1991)
and Smith (1984). LTC-style logics are also closely related to
Feferman’s systems for explicit mathematics (Feferman and Jäger
1996).

LTC will not suffice for proving all interesting properties of
functional programs. To reason about infinite streams and partiality
we will have use for principles which are not available in LTC, such
as coinduction and principles based on domain theory, for example
Scott induction. However, as Dybjer (1985) emphasised, LTC will
go a long way if we restrict ourselves to behaviours of programs on
total elements of data structures. It is a system in which we have a

natural interpretation of Martin-Löf type theory, and in this sense
LTC is at least as strong as Martin-Löf type theory. Moreover, it
is a system where we can reason about general recursive functions
(defined by fixed points) in a natural way, as our example will show.

The CoVer project. The ideas behind the present paper arose dur-
ing the CoVer project (Combining Verification Methods in Soft-
ware Development), a joint project involving the Programming
Logic, Functional Programming, and Formal Methods research
groups at Chalmers University of Technology. The goal of this
project was to build a system for verifying Haskell programs using
a combination of automatic and interactive theorem proving, and
random testing. To our disposal we already had several separate
tools: for example, an earlier version of the Agda system (“Agda
1”) for interactive proof in dependent type theory, automatic theo-
rem provers for classical first order predicate logic, and the random
testing tool QuickCheck (Claessen and Hughes 2000). To reach our
goal we needed to integrate these tools into a functioning system for
verifying “real” Haskell programs.

One proposal for using Agda for verifying Haskell programs
was the monadic embedding of Haskell into Agda by Abel, Benke,
Bove, Hughes, and Norell (Abel et al. 2005a). Different monads
can be chosen for different Haskell programs. If a direct transla-
tion into Agda is possible, then the identity monad is chosen. If the
Haskell program terminates on a decidable subset of the input type,
then the Maybe monad can be chosen. Potentially, other monads
can be used for dealing with general recursion where the termina-
tion predicate is a priori undecidable, although this possibility was
not explored in the paper.

The question of how to deal with the whole of Haskell, includ-
ing the “awkward squad” of features, was a lively topic of discus-
sion in the CoVer project. The adopted approach was to use GHC’s
(Glasgow Haskell compiler) reduction of full Haskell to an “ex-
ternal core language”, and then to provide several translators from
the core language for different verification purposes (into first order
logic for the purpose of automatic verification, and into Agda 1 for
interactive verification). We will not address the “whole of Haskell”
issue in this paper, although future work will benefit from the ex-
perience which was accumulated during the CoVer project.

Although the long term goal is to verify “real” functional pro-
grams (e g written in Haskell), we explain our approach in a simple
setting. For the time being, we limit our discussion to the core func-
tional programming language PCF (Plotkin 1997), present the rules
of an LTC-style logic for PCF, and show how to verify a general re-
cursive PCF-program for computing the greatest common divisor
of two numbers. It is straightforward to extend the discussion to
versions of PCF with lists and other recursive data types.

Paper overview. Sections 2 and 3 present the version of PCF that
we use in this paper and the version of LTC which is restricted
to PCF, respectively. In Section 4 we describe how to embed LTC
in the proof assistant Agda. Section 5 introduces the example we
use throughout this paper, a recursive PCF-program that computes
the greatest common divisor (gcd) of two numbers. In Section 6
we give a termination proof for gcd. In Section 7 we prove that
our program is correct, in other words, that gcd indeed returns the
greatest common divisor of its inputs. We conclude in Section 8
with some important directions for further developments of this
approach.

Agda code. We show only excerpts of the Agda code (available at
www1.eafit.edu.co/asicard/code/plpv-code-09.tgz) ac-
companying this paper. Note that some simple arithmetic properties
used in this proof have been left as postulates. We make heavy use
of Agda’s infix and mix-fix operators, and of Agda’s implicit argu-
ments to facilitate readability. In an infix or mix-fix operator, the

places for the arguments are marked with “ ”. Implicit arguments
are delimited with curly brackets instead of parentheses.

2. PCF-terms
For simplicity, we restrict our discussion to a version of the func-
tional programming language PCF, where we have added a constant
error for explicit error handling. The abstract syntax is:

t ::= x | t t | λx.t | fix x.t | 0 | succ t | pred t | iszero t

| true | false | if t then t else t | error

To illustrate our method, we shall verify the following PCF-
program which computes the greatest common divisor of two nat-
urals numbers using Euclid’s algorithm:

fix g.λm.λn.if (iszero n)

then if (iszero m) then error else m

else if (iszero m) then n

else if m � n then g (m− n) n
else g m (n−m)

We omit the PCF definitions of the functions − (minus) and �
(greater-than) on natural numbers.

3. LTC for PCF
We use LTC as a generic name for a family of related logical
systems which have been used by Aczel (1977, 1980, 1989) and
Smith (1984) for the purpose of interpreting Martin-Löf type theory
in type-free logical systems.

Some of these systems are based on combinators and stay
strictly within the realm of first order logic (Aczel 1977), whereas
others are based on the lambda calculus and do not. Since they play
a role for constructive foundations, these systems are usually intu-
itionistic but we may also consider classical versions. As we will
explain later, we are planning to use automatic theorem provers for
classical first order logic and for that purpose, it will be important
to work in a classical combinator based system. However, for the
purpose of this presentation, we will work in a system based on the
lambda calculus and will only use intuitionistic logic.

The idea to use LTC for verifying functional programs is dis-
cussed by Dybjer (1985, 1990), and we shall now present a mech-
anisation of this approach. It suffices here to use a version of LTC
which is adapted to PCF, where we only have booleans and natural
numbers as basic data. In Aczel’s and Smith’s work, other kinds of
data were considered, most notably the internal propositions which
are used for interpreting universes in Martin-Löf type theory. This
interesting part of LTC is however not needed here and is not part
of our LTC system for PCF.

Our LTC system for PCF is an intuitionistic predicate logic with
equality, where the terms are PCF-terms (as defined above). There
are two predicate symbols: B for total boolean, and N for total
natural number. (Note that LTC does not contain predicate symbols
for representing the usual PCF-types, which also contain partial
values). We have the following axioms and axiom schemata:

• Conversion rules for the PCF-terms:

∀t t′.if true then t else t′ = t

∀t t′.if false then t else t′ = t′

pred 0 = 0

∀t.pred (succ t) = t

iszero 0 = true

∀t.iszero (succ t) = false

∀t t′.(λx.t) t′ = t[x := t′]

∀t. fix x. t = t[x := fix x. t]

where t[x := t′] is the capture-free substitution of x for t′ in t,
• Discrimination rules for constructors:

¬(true = false)
∀t. ¬(0 = succ t)

• Introduction rules for B and N:
B true N 0
B false ∀t.N t→ N (succ t),

• Elimination rules for B and N expressing proof by case anal-
ysis on boolean values, and proof by mathematical induction,
respectively:

P true→ P false→ ∀t.(B t→ P t)
P 0→ ∀t.(N t→ P t→ P (succ t))→ ∀t.(N t→ P t).

In LTC we use the totality predicates for expressing termination.
If a function f maps a total natural number to a total natural number

∀t.N t→ N (f t),

then f terminates and outputs a (total) natural number whenever
the input is a (total) natural number. This is because a term which
is equal to (convertible to) a canonical form, also reduces to that
canonical form. See Dybjer (1985) for a detailed discussion of this
point.

Using the totality predicate N we can thus express that our gcd
program always terminates, unless both arguments are 0:

∀m n.N m→ N n→ ¬(m = 0 ∧ n = 0)→
N(gcd m n)

The correctness of the algorithm, that is, the fact that it outputs
the greatest common divisor of the two inputs, unless they are both
0, is expressed as follows:

∀m n.N m→ N n→ ¬(m = 0 ∧ n = 0)→
CD m n (gcd m n) ∧
∀d.(CD m n d→ d 6 (gcd m n))

where (CD m n d) stands for (d | m ∧ d | n) when | is the
divisibility predicate. Note that in LTC we distinguish between the
less-than-or-equal predicate 6 and the less-than-or-equal function
4. We have

m 6 n↔ m 4 n = true

All these notions are readily definable in LTC.

4. Representing LTC in Agda
Agda is a proof assistant based on Martin-Löf type theory. It can
also be used as a programming language with dependent types.
Like in other modern functional programming languages, we can
define data types and functions by pattern matching over elements
that belong to such data types. The difference is that, if we intend
to use the system as a theorem prover, we must ensure its logical

consistency and hence, that all the defined functions are total. For
this purpose, Agda performs a coverage check for pattern matching
definitions and a termination check for recursive calls; both checks
are purely syntactical. There is also a positivity check for data
types. The reader who is interested in learning more about the Agda
language and how to use it for programming and proving can look
at (Bove and Dybjer 2008; Agda wiki) for a gentle introduction.
In what follows, we will assume that the reader is familiar with
dependently typed programming.

So, how can we represent LTC in Agda? The first thought is to
use Agda as a logical framework along the lines of the Edinburgh
Logical Framework (ELF) (Harper et al. 1993). Like Agda, ELF is
a lambda calculus with dependent types and a few universes. A log-
ical theory (like LTC) is encoded in ELF by adding constants of the
appropriate types. Some constants encode the syntactic constructs
(term formers, predicate symbols), others encode proof objects for
inference rules. In Agda we can add such constants by declaring
them as postulates. In this way we can use Agda as a logical frame-
work in essentially the same way as ELF.

4.1 Logical Framework-style Encoding of LTC
PCF-terms. We employ the usual method for encoding the un-
typed lambda calculus.

First we postulate a domain of PCF-terms:

postulate D : Set

Then we postulate the term constructors for PCF, using higher or-
der abstract syntax for representing the variable binding operations
λ and fix as higher order functions.

postulate
λ : (D -> D) -> D -- abstraction and app.
‘ : D -> D -> D

fix : (D -> D) -> D -- fixed point operator

zero : D -- partial nat. numbers
succ : D -> D
pred : D -> D
iszero : D -> D

true : D -- partial booleans
false : D
if_then_else_ : D -> D -> D -> D

error : D -- error

Intuitionistic predicate logic with equality. It is also well-known
how to encode intuitionistic predicate logic with equality. The set
D will also be the domain of our predicate logic. As usual, we
implement propositions in predicate logic as types in Agda. Using
postulates, we can introduce each logical constant as a set former,
and each inference rule (introduction and elimination) as constants
of the corresponding types. We show here only the rules for the
equality predicate; the other logical constants are represented in a
similar way. Note that we use == for propositional equality, while
= stands for definitional equality in Agda.

postulate
== : D -> D -> Set
==-refl : (d : D) -> d == d
==-subst : (P : D -> Set) {d1 d2 : D} ->

d1 == d2 -> P d1 -> P d2

The equality predicate over D is represented by a function that takes
two elements in D and returns a set (that is, an element in Set): the
set of proofs that the two elements of D are equal. Using ==-refl

we can only construct proofs that an element is equal to itself. The
substitutivity property ==-subst states that, if two elements of D
are equal, and if we are able to prove an arbitrary predicate P over
D for the first of the two elements, then we can produce a proof that
the second element also satisfies the predicate.

Conversion and discrimination rules. The next step is to repre-
sent the conversion and discrimination rules.

We only show a few conversion rules here: those for predeces-
sor, the beta-rule, and the conversion rule for fixed points:

postulate
CP1 : pred zero == zero
CP2 : (n : D) -> pred (succ n) == n

beta : (f : D -> D) -> (a : D) ->
(λ f) ‘ a == f a

Cfix : (f : D -> D) -> fix f == f (fix f)

The two rules that discriminate between constructors are repre-
sented as follows:

postulate
true6=false : ¬ (true == false)
06=S : {n : D} -> ¬ (zero == succ n)

As usual in intuitionistic logic, negation is here defined in terms of
implication and absurdity.

Rules for the totality predicates. We show only the rules for the
totality predicate for natural numbers:

postulate
N : D -> Set
N-z : N zero
N-s : {n : D} -> N n -> N (succ n)

N-ind : (P : D -> Set) -> P zero ->
({n : D} -> N n -> P n -> P (succ n)) ->
{n : D} -> N n -> P n

where we assume that zero and succ are the Agda representation
of the PCF-terms 0 and succ from Section 2, respectively.

The first rule (the formation rule) declares a unary predicate
symbol. The next two are the introduction rules. The last one is
the induction rule.

Consistency. The consistency of our LTC for PCF is unproblem-
atic. We can for example interpret D as a domain in the sense of
Scott (1976) and interpret PCF-terms in D as in denotational seman-
tics. Then we can interpret == as equality of denotations and ver-
ify the conversion rules. See Aczel (1980) for an account of Frege
structures which model the full LTC-language.

4.2 Making use of Agda’s Inductive Notions
The main disadvantage of encoding the logical framework as pre-
sented above is that it makes limited use of the support for writing
proofs that Agda can provide. One of the main strengths of Agda
is its support for inductive data types, including inductive families,
and function definitions using pattern matching on such inductive
data types. To benefit from this feature, it would be better if we en-
code the inductive notions used in our program logic as data types
in Agda, rather than as postulates. First, the logical constants can be
represented as set formers defined by their introduction rules in the
usual way. Moreover, the totality predicates for boolean values and
natural numbers can be implemented as inductively defined predi-
cates over D.

Inductively defined sets and families are introduced in Agda
with the data construct. The elements of the set are introduced

by giving the name of the constructors and their types. We can
then define the elimination rules (for the logical constants and the
totality predicates) by pattern matching, as usual. If this is the
only use we make of pattern matching we get an implementation
of LTC in Agda, which is equivalent to the logical framework
implementation.

However, to make full use of Agda’s support for proof by pat-
tern matching, we will not restrict ourselves to using the elimina-
tion rules above. Instead we will allow proof by pattern matching
in general, as long as it is accepted by Agda’s coverage and termi-
nation checker. This means that we actually work in an extension
of LTC since, by working in this way, new, more general, induction
principles become available. Of course, it is expected that this ex-
tension is conservative, although a rigorous proof of this would be
quite hard, and is outside the scope of this paper.

What about the set D? Can it also be inductively defined in
Agda? Yes, this is possible, we can for example build a Scott do-
main for PCF in Agda, see for example Hedberg (1996) for an im-
plementation of constructive domain theory in ALF, a precursor of
Agda. However, we will then not be able to use Agda’s intensional
equality type for equality of domain elements; equality of domain
elements will be represented by a non-trivial equivalence relation.
As a consequence we would need to work with the setoid (D,==)
and this would be inconvenient. Since we will never prove proper-
ties by induction on D, it is preferable to postulate the existence of
D and the conversion rules for terms on D.

Remark. One might object that we should not work with postu-
lates which cannot be instantiated in Martin-Löf type theory. We
reject this objections on the grounds that we are not here attempting
to contribute to constructive foundations but to outline a genuinely
practical approach to verification of functional programs. To this
end, we do not mind using classical logic (for reasons given above)
and axioms which are proved consistent using classical techniques.

To sum up, some of the axioms of LTC will still be postu-
lated, others will be consequences of inductive definitions. We now
present how this is done.

PCF-terms. This is just like in the logical frameworks encoding
presented before. We postulate a domain of PCF-terms

postulate D : Set

and the existence of constants for representing the term construc-
tors.

Intuitionistic predicate logic with equality. The logical constants
are now represented as inductively defined set formers, as usual in
Martin-Löf type theory. For example, the Agda code for existential
quantification and for the equality predicate are as follows:

data ∃ (P : D -> Set) : Set where
∃-i : (witness : D) -> P witness -> ∃ P

∃-fst : {P : D -> Set} -> ∃ P -> D
∃-fst (∃-i x px) = x

∃-snd : {P : D -> Set} -> (x-px : ∃ P) ->
P (∃-fst x-px)

∃-snd (∃-i x px) = px

data _==_ (x : D) : D -> Set where
==-refl : x == x

==-subst : (P : D -> Set){x y : D} -> x == y ->
P x -> P y

==-subst P ==-refl px = px

As mentioned above, we do not need to restrict ourselves to
using the elimination rules for the logical constants, but can employ
the more general pattern matching provided by Agda.

Conversion and discrimination rules. Just as in the logical
framework representation, the conversion rules are postulated.

Rules for the totality predicates. The totality predicates are now
represented as inductive families generated by the introduction
rules. We only show the totality predicate for natural numbers.

data N : D -> Set where
N-z : N zero
N-s : {n : D} -> N n -> N (succ n)

We can now define the elimination rule for N by pattern matching:

N-ind : (P : D -> Set) -> P zero ->
({n : D} -> N n -> P n -> P (succ n)) ->
{n : D} -> N n -> P n

N-ind P p0 h N-z = p0
N-ind P p0 h (N-s Nn) = h Nn (N-ind P p0 h Nn)

However, as already remarked, we will not restrict ourselves to
using this elimination rule, but will use Agda’s pattern matching
on B and N.

Consistency. Establishing the consistency of the latter encoding
of LTC in Agda is less straightforward than for the logical frame-
work encoding. We need to establish the consistency of Agda ex-
tended with the postulates for D and the conversion rules. We start
with the usual set-theoretic model of Martin-Löf type theory with
inductive definitions following Dybjer (1991). In this model Agda’s
function spaces are interpreted as full set-theoretic function spaces
and inductive notions are interpreted as least fixed points of mono-
tone operators.

We then extend this model in two ways. First we model the
additional postulates for D by constructing a Scott domain for D.
Moreover, the induction principles accepted by Agda (with cov-
erage checking and termination checking) are modelled by total
functions in the set-theoretic model. To work out the details of this
model would require substantial work and is outside the scope of
this paper.

Note that building a set-theoretic model of Agda, even with-
out the extra postulates for D, but with pattern matching, coverage
checking, and termination checking would already require substan-
tial work. It would entail the consistency of Agda, viewed as a log-
ical system.

5. Example: Greatest Common Divisor
In Section 2 we showed a program gcd for computing the greatest
common divisor of two numbers written in PCF. We can now
use the representation of PCF-terms as elements of the set D in
Agda, which we presented in the previous section, to define the
gcd algorithm:

gcdh : D -> D
gcdh = \g -> λ (\m -> λ (\n ->

if (iszero n)
then (if (iszero m)

then error
else m)

else (if (iszero m)
then n
else (if (m � n)

then g ‘ (m - n) ‘ n
else g ‘ m ‘ (n - m)))))

gcd : D -> D -> D
gcd m n = fix gcdh ‘ m ‘ n

where both − and � are functions of type D -> D -> D.
From this definition of gcd we prove the following five lemmas,

which will be useful when proving properties about the algorithm:

gcd-00 : gcd zero zero == error

gcd-S0 : {m : D} -> N m ->
gcd (succ m) zero == succ m

gcd-0S : {n : D} -> N n ->
gcd zero (succ n) == succ n

gcd-S>S : {m n : D} -> N m -> N n ->
(succ m > succ n) ->
gcd (succ m) (succ n) ==

gcd (succ m - succ n) (succ n)

gcd-S≤S : {m n : D} -> N m -> N n ->
succ m ≤ succ n ->
gcd (succ m) (succ n) ==

gcd (succ m) (succ n - succ m)

Although they follow rather straightforwardly from the defini-
tion of gcd and the conversion rules for PCF, proving them is a sur-
prisingly time consuming task in Agda. The problem is that Agda
does not know how to normalise a PCF-programs, so each step in
the proof has to be performed manually. The conversions rules for
PCF-programs are given by postulates and hence do not contribute
to the usual normalisation provided by Agda’s type checker. As we
describe in Section 8.1, we plan to connect a first order theorem
prover to Agda, which we expect will automatise much of the rea-
soning needed to prove equations of this kind.

Note that > and ≤ above are relations, that is, operators that
return a set, and not functions returning a truth value:

> : D -> D -> Set
m > n = m � n == true

≤ : D -> D -> Set
m ≤ n = m � n == false

Similar definitions are given for the relations < and ≥.
In the next two sections we show that this algorithm is correct

and terminates with the greatest common divisor of its two inputs.

6. Termination of gcd
The termination theorem for gcd states that if m and n are total
natural numbers, then gcd m n is also a total natural number,
provided that at least one of the numbers m or n is non-zero:

gcd-N : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
N (gcd m n)

We first prove some (easy) lemmas using the substitutivity property
of equality:

gcd-S0-N : {m : D} -> N m -> N (gcd (succ m) zero)

gcd-0S-N : {n : D} -> N n -> N (gcd zero (succ n))

gcd-S>S-N : {m n : D} -> N m -> N n ->
N (gcd (succ m - succ n) (succ n)) ->
succ m > succ n ->
N (gcd (succ m) (succ n))

gcd-S≤S-N : {m n : D} -> N m -> N n ->
N (gcd (succ m) (succ n - succ m)) ->
succ m ≤ succ n ->
N (gcd (succ m) (succ n))

These four lemmas show that the left hand sides of the last four
equations presented in Section 5 terminate. Note that the last two
lemmas have an extra hypothesis stating that the result of the
recursive call corresponding to the case we are considering (that
is, the right hand side of the corresponding equation in Section 5)
also terminates.

Now, given two total natural numbers m and n, we prove that
either m < n or m ≥ n by pattern matching on the proofs that the
numbers are total.

x>y∨x≤y : {m n : D} -> N m -> N n ->
(m > n) ∨ (m ≤ n)

Next we prove two auxiliary lemmas. The first lemma concerns
the case where the total numbers m and n are such that m > n

gcd-x>y-N : {m n : D} -> N m -> N n ->
(h : {m’ n’ : D} -> N m’ -> N n’ ->

(m’ , n’) <2 (m , n) ->
¬ ((m’ == zero) ∧ (n’ == zero))
-> N (gcd m’ n’)) ->

m > n ->
¬ ((m == zero) ∧ (n == zero)) ->
N (gcd m n)

The other auxiliary lemma is similar but concerns the case where
m ≤ n. Both lemmas are proved by pattern matching on the proofs
that the numbers are total and they call (some of) the previous four
lemmas we presented at the beginning of this section.

Finally, we use course-of-value induction on the lexicographic
order <2 on pairs of (total) natural numbers

N-wf2 : (P : D -> D -> Set) ->
({m n : D} -> N m -> N n ->

({m’ n’ : D} -> N m’ -> N n’ ->
(m’ , n’) <2 (m , n) -> P m’ n’) ->
P m n) ->

{m n : D} -> N m -> N n -> P m n

to prove that gcd terminates. (N-wf2 can be proved by course-of-
value induction on the usual order on (total) natural numbers which,
in turn, can be proved by pattern matching on the proof that the
numbers are total.)

Note that if in N-wf2 we take P such that

P : D -> D -> Set
P m n = ¬ ((m == zero) ∧ (n == zero)) ->

N (gcd m n)) ->

then, the type that results from N-wf2, when applied to m and n and
proofs that they are total, is the same as the type that results from
the auxiliary lemma gcd-x>y-N. Moreover, the premise what we
called h in gcd-x>y-N corresponds to the premise of the induction
step in the induction principle N-wf2.

7. Correctness of gcd
We show here that the gcd algorithm presented in Section 5 returns
the greatest common divisor of two numbers, provided that at least
one of those two numbers is non-zero. The main proofs have the
same structure as the termination proof above. Hence, we only
show the main steps.

Let us first define the divisibility relation:

| : D -> D -> Set
m | n = ¬ (m == zero) ∧ ∃ (\k -> n == k * m)

That two elements have a common divisor is expressed by

CD : D -> D -> D -> Set
CD m n d = (d | m) ∧ (d | n)
That an element is greater than any common divisor is expressed
by

GRT : D -> D -> D -> Set
GRT m n g = (d : D) -> N d -> CD m n d -> d ≤ g

That an element is the greatest common divisor is expressed by

GCD : D -> D -> D -> Set
GCD m n g = CD m n g ∧ GRT m n g

Our correctness theorem is thus

gcd-GCD : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
GCD m n (gcd m n)

To prove this theorem we only need to combine a proof that the
result of (gcd m n) is a common divisor of m and of n (called
gcd-CD and presented in Section 7.1), and a proof that (gcd m n)
is greater than any common divisors of m and n (called gcd-GRT
and presented in Section 7.2). See Section 7.3 for the full proof of
the correctness property.

7.1 Common Divisor
The proof of

gcd-CD : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
CD m n (gcd m n)

follows a similar structure to the proof of gcd-N presented in Sec-
tion 6. The four lemmas we need to prove here are the following:

gcd-S0-CD : {m : D} -> N m ->
CD (succ m) zero (gcd (succ m) zero)

gcd-0S-CD : {n : D} -> N n ->
CD zero (succ n) (gcd zero (succ n))

gcd-S>S-CD :
{m n : D} -> N m -> N n ->
CD (succ m - succ n) (succ n)

(gcd (succ m - succ n) (succ n)) ->
succ m > succ n ->
CD (succ m) (succ n) (gcd (succ m) (succ n))

gcd-S≤S-CD :
{m n : D} -> N m -> N n ->
CD (succ m) (succ n - succ m)

(gcd (succ m) (succ n - succ m)) ->
succ m ≤ succ n ->
CD (succ m) (succ n) (gcd (succ m) (succ n))

Next, we need to prove the corresponding auxiliary lemmas. Then
we use course-of-value induction on the lexicographic order on pair
of (total) natural numbers to obtain the desired result, namely, that
(gcd m n) is a common divisor of m and of n.

7.2 Greater than any Common Divisor
To prove that the result of the gcd algorithm is greater than any
other common divisor of the two numbers, we use an auxiliary
relation stating that any common divisor of m and n divides g:

DIVISIBLE : D -> D -> D -> Set
DIVISIBLE m n g = {d : D} -> N d ->

CD m n d -> d | g

We first prove that this relation holds for m, n and (gcd m n):

gcd-DIVISIBLE : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
DIVISIBLE m n (gcd m n)

This proof follows the same structure as the other proofs. Namely,
we first prove four lemmas showing that the relation hold for
the result of the left hand side of the last four equations of gcd
presented in Section 5. As usual, in the two cases where gcd
performs a recursive call, we need to add an extra hypothesis stating
that the property holds for the result of the recursive call. Then we
prove the two corresponding auxiliary lemmas and finally, we wrap
up all the intermediate results using course-of-value induction on
the lexicographic order on pairs of (total) natural numbers.

Next, we show that for any natural number g that is a common
divisor of two other elements and that is related to these elements
by the DIVISIBLE relation, then g is also greater than any common
divisor of the two other elements.

gcd-GRT : {m n g : D} -> N g -> CD m n g ->
DIVISIBLE m n g -> GRT m n g

This property is proved by pattern matching on the proof that g is a
total number, or in other words, that (N g) holds. In the first case
(N g) is N-z, which means that g must be zero. We know here that
g | m because (CD m n g) holds, but this is actually not possible
because the definition of divisibility rules out the case zero | . In
the second case (N g) is (N-s x) and hence, g must be (succ i)
for some element i. The DIVISIBLE relation says that any common
divisor d of m and n must also divide g, from where we can derive
that d ≤ g since g is non-zero.

In particular, gcd-GRT can be applied to m, n and (gcd m n)
when at least one of m or n is non-zero, given that for this par-
ticular choice of inputs we can prove all the necessary hypothesis
(as we have already showed in this paper), and thus obtain that
GRT m n (gcd m n) holds.

7.3 Greatest Common Divisor
Putting all this together our correctness proof becomes:

gcd-GCD : {m n : D} -> N m -> N n ->
¬ ((m == zero) ∧ (n == zero)) ->
GCD m n (gcd m n)

gcd-GCD {m} {n} Nm Nn mn6=0 =
∧-i gcd-cd

(gcd-GRT (gcd-N Nm Nn mn6=0)
gcd-cd

(gcd-DIVISIBLE Nm Nn mn6=0))
where gcd-cd : CD m n (gcd m n)

gcd-cd = gcd-CD Nm Nn mn6=0

8. Future Work
8.1 Calling an Automatic Theorem Prover
Reasoning about a program such as gcd in our Agda implemen-
tation of LTC is very low level compared with ordinary reason-
ing about programs in Agda. For example, judgements of the form
n : Nat (where Nat is the inductively defined set of natural num-
bers) are checked automatically by Agda, whereas LTC proposi-
tions of the form (N n) have to be proved manually by constructing
proof objects proof : N n. Moreover, Agda automatically nor-
malises terms by using its definitional equality rules, whereas sim-
plification using the postulated conversion rules for elements in D
has to be done manually.

However, much of this low-level reasoning could be done auto-
matically, for example, by a theorem prover for first order predicate
logic. Therefore we plan to connect an off-the-shelf theorem prover

(like Vampire or Equinox) to Agda, and use it to automatise sub-
stantial parts of our LTC-proofs. Such a “plug-in” for first order
logic was in fact already built for Agda 1 and Agda-Light (an ex-
perimental system), and we plan to do the analogous connection for
the current version of Agda.

In order to make full use of a first order theorem prover, it
becomes necessary to modify LTC above so that it is an official
first order theory. We need to transform the above lambda calculus
based version of LTC to a combinator based one. In practice, we
use so called “super-combinators”, that is, rather than translating
everything into combinations of S and K, we introduce a new
combinator for each lambda (so called lambda lifting). This leads
to a very natural proof style where we would for example have a
super-combinator gcd with its recursion equations as postulates.

During the CoVer project, there were several contributions in
this direction which we expect to benefit from. First, Koen Claessen
experimented with a method where Haskell programs were trans-
lated into first order logic, and theorems about them were proved by
using off-the-shelf theorem provers. Gregoire Hamon wrote a pro-
gram (“The CoVer translator”) which automatically translated pro-
grams in the external core language of GHC into a language under-
standable by first order theorem provers. And as already mentioned
above, Andreas Abel, Thierry Coquand, and Ulf Norell (Abel et al.
2005b) investigated the use of external first order theorem provers
for proving theorems in Agda-Light.

8.2 Using Agda’s Standard Library for Proofs in LTC
The gcd function calls auxiliary functions for subtraction and
greater-than. Firstly, these functions are defined by primitive re-
cursion and will pass Agda’s termination checker. So there is no
need to leave standard dependent type theory and move to LTC to
prove properties about them. Moreover, they are basic functions,
the properties of which can be expected to be found in a standard
library.

So the question arises whether we can transfer such results
about subtraction and greater-than to LTC. The answer is that we
can apply the Aczel translation of Martin-Löf type theory into LTC.
For example, the function

+ : Nat -> Nat -> Nat

would be translated into the LTC-function

+’ : D -> D -> D

with the property

(m n : D) -> N m -> N n -> N (m +’ n)

And the commutativity theorem for +

(m n : Nat) -> m + n == n + m

will be translated into

(m n : D) -> N m -> N n -> m +’ n == n +’ m

References
Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell.

Verifying Haskell programs using constructive type theory. In Proc. of
the ACM SIGPLAN 2005 Haskell Workshop, pages 62–73. ACM, 2005a.

Andreas Abel, Thierry Coquand, and Ulf Norell. Connecting a logical
framework to a first-order logic prover. In B. Gramlich, editor, Proc. of
5th International Workshop on Frontiers of Combining Systems, volume
3717 of LNCS, pages 285–301, 2005b.

Peter Aczel. What might the objects of the logical theory of constructions
be? In P. Dybjer et al., editors, Proc. of the Worshop on Programming
Logic, number 54 in Programming Methodology Group Reports, pages
122–139. Chalmers University of Technology, 1989.

Peter Aczel. Frege structures and the notion of proposition, truth and set. In
J. Barwise, H. J. Keisler, and K. Kunen, editors, The Kleene Symposium,
volume 101 of Studies in Logic and the Foundations of Mathematics,
pages 31–59. Amsterdan: North-Holland, 1980.

Peter Aczel. The strength of Martin-Löf’s intuitionistic type theory with
one universe. In S. Miettinen and J. Väänanen, editors, Proc. of the Sym-
posium on Mathematical Logic (Oulu, 1974), Report No. 2, Department
of Philosopy, University of Helsinki, Helsinki, pages 1–32, 1977.

Peter Aczel, David P. Carlisle, and Nax Mendler. Two framework of
theories and their implementation in Isabelle. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 3–39. Cambridge
University Press, 1991.

Agda wiki. Available at appserv.cs.chalmers.se/users/ulfn/
wiki/agda.php, 2008.

Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu. Defining and
reasoning about recursive functions: A practical tool for the Coq proof
assistant. In M. Hagiya and P. Wadler, editors, FLOPS, volume 3945
of Lecture Notes in Computer Science, pages 114–129. Springer, 2006.
ISBN 3-540-33438-6.

Ana Bove and Venanzio Capretta. Modelling general recursion in type
theory. Mathematical Structures in Computer Science, 15:671–708,
February 2005. Cambridge University Press.

Ana Bove and Peter Dybjer. Dependent types at work, 2008. Lecture notes
of a graduate course with the same name. Submitted for publication in
the post-proceedings of the International Summer School on Language
Engineering and Rigorous Software Development.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of Haskell programs. In Proc. of the ACM SIGPLAN
International Conference on Functional Programming, volume 35.9 of
ACM SIGPLAN Notices, pages 268–279. ACM, 2000.

Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer. Theorem prov-
ing for functional programmers. Sparkle: A functional theorem prover.
In T. Arts and M. Mohnen, editors, Implementation of Functional Lan-
guages. 13th International Workshop, IFL 2001, volume 2312 of LNCS,
pages 55–71, 2002.

Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and
their set-theoretic semantics. In G. Huet and G. Plotkin, editors, Logical
Frameworks, pages 280–306. Cambridge University Press, 1991.

Peter Dybjer. Program verification in a logical theory of constructions.
In J.-P. Jouannaud, editor, Functional Programming Languages and
Computer Architecture, volume 201 of LNCS, pages 334–349, 1985.
Appears in revised form as Programming Methodology Group Report
26, University of Gothenburg and Chalmers University of Technology,
1986.

Peter Dybjer. Comparing integrated and external logics of functional pro-
grams. Science of Computer Programming, 14:59–79, 1990.

Peter Dybjer and Herbert Sander. A functional programming approach to
the specification and verification of concurrent systems. Formal Aspects
of Computing, 1:303–319, 1989.

Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator, part II. Ann. Pure Appl. Logic, 79(1):
37–52, 1996.

Jean-Yves Girard. Linear logic and parallelism. In M. Venturini Zilli, editor,
Mathematical Models for the Semantics of Parallelism, volume 280 of
LNCS, pages 166–182, 1986.

Carlos Gonzalı́a. Relations in Dependent Type Theory. PhD thesis,
Chalmers University of Technology and University of Gothenburg, De-
partment of Computer Science and Engineering, 2006.

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edin-
burgh LCF, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. JACM, 40(1):143–184, 1993.

William L. Harrison and Richard B. Kieburtz. The logic of demand in
Haskell. Journal of Functional Programming, 15(6):837–891, 2005.

Michael Hedberg. A type-theoretic interpretation of constructive domain
theory. J. Autom. Reasoning, 16(3):369–425, 1996.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology and Univer-
sity of Gothenburg, Department of Computer Science and Engineering,
2007.

Lawrence C. Paulson. Isabelle. A Generic Theorem Prover, volume 828 of
LNCS. Springer, 1994. (With a contribution by T. Nipkow).

Simon Peyton Jones, editor. Haskell 98 Language and Libraries The
Revised Report. Cambridge University Press, April 2003.

Gordon Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223–255, 1997.

Dana S. Scott. Data types as lattices. SIAM J. Comput., 5(3):522–587, 1976.
Jan Smith. An interpretation of Martin-Löf’s type theory in a type-free

theory of propositions. The Journal of Symbolic Logic, 49(3):730–753,
1984.

