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Abstract

We propose a new approach to computer-assisted verification of lazy func-
tional programs where functions can be defined by general recursion. We
work in first-order theories of functional programs which are obtained by
translating Dybjer’s programming logic (Dybjer, P. [1985]. Program Veri-
fication in a Logical Theory of Constructions. In: Functional Programming
Languages and Computer Architecture. Ed. by Jouannaud, J.-P. Vol. 201.
Lecture Notes in Computer Science. Springer, pp. 334–349) into a first-order
theory, and by extending this programming logic with new (co-)inductive
predicates. Rather than building a special purpose system, we formalise our
theories in Agda, a proof assistant for dependent type theory which can
be used as a generic theorem prover. Agda provides support for interact-
ive reasoning by representing first-order theories using the propositions-as-
types principle. Further support is provided by off-the-shelf automatic the-
orem provers for first-order-logic called by a Haskell program that translates
our Agda representations of first-order formulae into the TPTP language
understood by the provers. We show some examples where we combine in-
teractive and automatic reasoning, covering both proofs by induction and co-
induction. The examples include functions defined by structural recursion,
simple general recursion, nested recursion, higher-order recursion, guarded
and unguarded co-recursion.

Keywords: automatic proofs, first-order theories, functional program
correctness, general recursion, interactive proofs, lazy evaluation, total lan-
guages, type theory
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Resumen

Proponemos un nuevo enfoque a la verificación asistida por computador
de programas funcionales perezosos, en los cuales las funciones pueden ser
definidas por recursión general. Empleamos teorías de primer orden para
programas funcionales las cuales fueron obtenidas de traducir la lógica pa-
ra la programación de Dybjer (Dybjer, P. [1985]. Program Verification in
a Logical Theory of Constructions. In: Functional Programming Langua-
ges and Computer Architecture. Ed. by Jouannaud, J.-P. Vol. 201. Lecture
Notes in Computer Science. Springer, pp. 334–349) a una teoría de primer
orden, y de extender esta lógica para la programación con nuevos predicados
(co-)inductivos. En lugar de construir un sistema para formalizar nuestras
teorías, formalizamos éstas en Agda, un asistente de pruebas para teoría de
tipos dependientes que puede ser usado como un demostrador de teoremas
genérico. Agda proporciona soporte para el razonamiento interactivo repre-
sentando las teorías de primer orden mediante el principio de propositions-
as-types. Se obtiene soporte adicional mediante demostradores automáticos
de teoremas genéricos para lógica de primer orden, los cuales son llamados
por un programa desarrollado en Haskell, que traslada nuestra representa-
ción en Agda de las fórmulas de primer orden al lenguaje TPTP entendido
por los demostradores automáticos. Mostramos ejemplos de combinación
de razonamiento interactivo y automático en pruebas por inducción y por
co-inducción. Nuestros ejemplos incluyen funciones definidas por recursión
estructural, recursión general simple, recursión anidada, recursión de orden
superior y co-recursión.

Palabras claves: demostración automática de teoremas, demostración
interactiva de teoremas, evaluación perezosa, lenguajes totales, recursión
general, teoría de tipos, teorías de primer orden, verificación de programas
funcionales
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Chapter 1

Introduction

The development of programming languages and methods for reasoning
about programs have been interwoven since their beginnings. It is often
claimed that pure functional programming languages, that is, functional
programming languages where the functions “take all their input as explicit
arguments, and produce all their output as explicit results” [Hutton 2007,
p. 87], are suitable for formal reasoning (see, for example, Wadler [1987] and
Hughes [1989]).

Achten et al. [2010] state that research on reasoning about functional pro-
grams can be divided into four categories: (i) defining semantics, (ii) trans-
formational reasoning, (iii) formal verification of functional properties and
(iv) formal verification of non-functional properties. For these categories, re-
search focuses on defining new concepts, on programming transformations,
on the input and output correspondence of programs, and on properties such
as memory consumption or parallel performance, respectively.

The research performed to support this thesis belongs to (iii) above on
a certain kind of programs. Namely, our research focuses on the verification
of functional properties of higher-order (pure) lazy functional programs.

The term ‘lazy’ denotes at most two different aspects: (i) an evaluation
strategy—lazy evaluation—that does not re-evaluate expressions which have
already been evaluated (see, for example, Peyton Jones [1987]) and (ii) the
fact that the evaluation of arguments proceeds in a lazy manner, that is, the
arguments of a function are evaluated when it is strictly necessary. On this
thesis, we use the term ‘lazy’ to refer to (ii).

Assume that we want to formally verify programs written in a lazy func-
tional language like Haskell [Peyton Jones 2003], where functions can be
defined by general recursion. What do we do? In other words:

• What programming logic and what proof assistant should we use?

– by programming logic we mean a logic in which programs and
specifications can be expressed and in which it can be proved or
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1. Introduction

disproved that a certain program meets a certain specification,
and

– by proof assistant we mean a computer system which helps with
the development of formal proofs.

• Can part of the job be automated?

A significant challenge is how to deal with the possible use of general
recursion. By allowing unrestricted recursion, the semantics of Haskell must
deal with undefined values representing errors and non-terminating pro-
grams. Moreover, most of the proof assistants lack a direct treatment for
general recursive functions [Bove, Krauss and Sozeau 2012].

The goal of this thesis is to build a computer-assisted framework for reas-
oning about programs written in Haskell-like lazy functional languages. We
suggest that this goal can be achieved by defining a first-order programming
logic for lazy functional programs and by building on existing state-of-the-
art systems in interactive and automatic theorem proving. Using Turner’s
terminology where total values includes finite data and potentially infinite
co-data (see, for example, Turner [1995, 2004]), our approach makes it pos-
sible to reason about arbitrary functional programs, also those which denote
partial functions. However, typically, valid inputs and outputs are total val-
ues, and we use predicates for expressing the properties of correct inputs
and correct outputs.

For reasoning about functional programs, we can use equational reason-
ing, induction and co-induction (see, for example, Burstall [1969], Wadler
[1987] and Gordon [1995]). In this thesis, we shall use an interactive proof
assistant to handle the high-level proofs steps (for example, introduction of
hypothesis, case analysis and the use of (co-)inductive principles). Moreover,
we shall use off-the-shelf automatic theorem provers for first-order logic
(henceforth, ATPs) for the proof steps involving equational reasoning or
simple first-order reasoning. Therefore in the sequel, we shall talk about
interactive, automatic and combined proofs.

Our answers to the questions at the beginning of this introduction
provide our main contributions, as follows:

• In the thesis, we define and formalise two programming logics. We
define our first programming logic for reasoning about programs using
total and finite natural numbers and Booleans for a version of a core
lazy functional programming language, Plotkin’s [1977] PCF language.
We use a type-free language where the property of being a total and
finite value is represented by two predicates (one for natural numbers
and other for Booleans). Moreover, these predicates allow to express
that a certain program terminates with a finite total natural number
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or a Boolean value, respectively. Our theory is not strictly a first-
order theory, since it uses 𝜆-abstraction. Our theory can deal with gen-
eral recursion (structural and non-structural recursion), higher-order
functions, inductive definitions of natural numbers and Boolean data
types, and proofs by induction. We shall use this programming logic
for basing the consistency of the second programming logic described
in the next item.

• We define our second programming logic for reasoning about programs
for extended versions of PCF. As in our previous programming logic,
we use a type-free language where the properties of being a total value
are represented by predicates, and these predicates allow to express
that a certain program represents a total value. Unlike our previous
programming logic, our theory is a first-order theory because we use
𝜆-lifting to remove the 𝜆-abstractions. Our theory can deal with gen-
eral recursion (structural and non-structural recursion, guarded and
unguarded co-recursion), higher-order functions, (co-)inductive defin-
itions of data types, and proofs by (co-)induction. This programming
logic will be the one used for reasoning about Haskell-like lazy func-
tional programs.

• We formalise our programming logics in the Agda proof assistant
[Norell 2007b; The Agda Development Team 2014]. In particular, we
use Agda as a logical framework, that is, as a meta-logical system
for formalising other logics, such as classical first-order logic. The ba-
sic methodology is similar to that of the Edinburgh Logical Frame-
work [Harper, Honsell and Plotkin 1993]—another logical framework
based on dependent type theory. However, since Agda is a language
with support for inductive definition and pattern matching, we can
use this support when formalising inductive definitions and proofs by
induction. This helps making proof construction easier and more user-
friendly. In addition, by using Agda, we get access to advanced features
for interactively building proofs, such as, commands for refining proof
terms, flexible mixfix syntax accepting Unicode, a fine interface, and
so on. We call this approach “the inductive approach” to logical frame-
works.

• We provide a translation of our Agda representation of first-order for-
mulae into TPTP [Sutcliffe 2009]—a language understood by many
off-the-shelf ATPs—so we can use them when proving the properties
of our programs. For this purpose we extended Agda with an ATP-
pragma, which instructs Agda to interact with the ATPs. Moreover,
we wrote the Apia program, a Haskell program which performs the
above translation, calls the ATPs and uses Agda as a Haskell library.
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1. Introduction

• We illustrate our approach with some examples where we verify some
general (co-)recursive programs including nested recursive functions,
higher-order recursive functions, functions without a termination
proof, and guarded and unguarded co-recursive functions.

1.1 Context

Our approach to computer-assisted verification of functional programs com-
bines three strands of research: (i) foundational frameworks based on par-
tial functions and a separation of propositions and types, and the use of
these foundational frameworks as programming logics for lazy functional
programs, (ii) using ATPs for proving properties of functional programs by
translating them into first-order logic and (iii) connecting ATPs to proof
assistants based on Martin-Löf’s type theory.

Based on a foundational framework proposed by Aczel [1977b], Dybjer
[1985] proposed a programming logic for reasoning about programs using
total and finite naturals numbers in a lazy functional program. Dybjer
used a type-free partial language where the set of total and finite natur-
als numbers are represented by an inductive predicate. Dybjer’s program-
ming logic is compared with others programming logics in [Dybjer 1990].
Moreover, Dybjer and Sander [1989] proposed a higher-order programming
logic for proving properties of lazy functional programs by induction and
co-induction based on Park’s higher-order 𝜇-calculus [Park 1976]. Dybjer
and Sander formalised the 𝜇-calculus in the Isabelle proof assistant [Paulson
1994b]. Our programming logic for reasoning about programs in PCF using
total and finite values is based on [Dybjer 1985] and our first-order program-
ming logic for reasoning about programs in extensions of PCF using total
finite and potentially infinite values is based on [Dybjer 1985; Dybjer and
Sander 1989].

Some ideas behind this thesis arose during the CoVer (Combining Veri-
fication Methods in Software Development) project, a joint project involving
the Programming Logic, Functional Programming and Formal Methods re-
search groups at Chalmers University of Technology [Abel, Benke, Bove,
Claessen et al. 2003–2005]. The goal of that project was to build a system
for verifying Haskell programs using a combination of automatic and in-
teractive theorem proving, and random testing. To its disposal the project
already had several separate tools: for example, Agda 1 [Augustsson et al.
2004]—an earlier version of Agda—for interactive proof in dependent type
theory, automatic theorem provers for classical first-order logic, and the ran-
dom testing tool QuickCheck [Claessen and Hughes 2000]. We benefit from
the experience which was accumulated during the CoVer project, in partic-
ular, that of using ATPs for proving properties of functional programs by
translating them into first-order logic as proposed by Claessen and Hamon
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§ 1.2. Related Work

in their unpublished work on the so-called “The CoVer Translator”.
AgdaLight [Norell and Abel 2006] was an experimental version of Agda.

The implementation of the Apia program took some ideas from the connec-
tion via a plug-in mechanism of AgdaLight to the Gandalf ATP [Tammet
1997], developed by Abel, Coquand and Norell [2005]. A related work to
this connection is the translation of fragments of Martin-Löf’s type theory
to first-order logic [Tammet and Smith 1996].

1.2 Related Work

There are a few practical computer-assisted frameworks for the verification
of lazy and general recursive functional programs.

Hip—the Haskell Inductive Prover [Rosén 2012]—is a tool to automat-
ically prove properties about Haskell programs using structural induction,
Scott’s fixed-point induction or the approximation lemma. Hip proofs are
based on the translation of (a subset of) Haskell programs into an interme-
diate language, which is then translated into first-order logic. The above
higher-order principles of (co-)induction are handled by Hip at the meta-
level, and the first-order reasoning is handled by off-the-shelf ATPs. In
Hip’s future work [Rosén 2012, § 3.4.3 and § 5.2.2], the possibility of using
two predicates for representing total finite values and total potentially infin-
ite values, respectively, is discussed. However, Rosén mentions the difficulty
of using the predicate for total and finite values on values of different induct-
ive data types, and the impossibility to express the totality of potentially
infinite values in first-order logic without axiomatising set theory [Rosén
2012, § 3.4.3]. We have shown that by using inductive predicates, we can
represent total finite values for different inductive data types (see § 5.3), and
that by using co-inductive predicates (see § 5.5), we can express the totality
of potentially infinite values based on a much simpler axiomatisation [Bove,
Dybjer and Sicard-Ramírez 2012].

HipSpec is an automatic inductive theorem prover and theory exploration
system for deriving and proving properties about Haskell programs [Claessen,
Johansson et al. 2013]. HipSpec uses the automatic inductive prover Hip
and QuickSpec, which automatically conjectures equations about a Haskell
program using testing [Claessen, Smallbone and Hughes 2010]. By using
both tools, HipSpec can use auxiliary lemmas conjectured by QuickSpec and
proved by Hip to prove a given property. Although Hip supports (co-)induct-
ive reasoning, HipSpec only supports the inductive one. In addition, since
many proofs are too complex to be fully automated, there is ongoing work
in integrating HipSpec with the Isabelle system [Johansson 2013].

The function package [Krauss 2010, 2013] provides support for general
recursion in Isabelle/HOL [Nipkow, Paulson and Wenzel 2002]. Given a set of
recursive equations for a function, the function package defines inductively
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1. Introduction

the graph of the function and a predicate representing it. From the graph
of the function, the package defines an underspecified—assigning arbitrary
values to elements outside the domain of the function—total function. The
package automates (or partially automates) the definition of nested recursive
functions (see § 7.1) or higher-order recursive functions (see § 7.2).

The Sledgehammer tool [Blanchette, Böhme and Paulson 2013; Blanchette
and Paulson 2013] is a component of Isabelle/HOL that allows us to use off-
the-shelf ATPs and Satisfiability Modulo Theories (henceforth, SMT) solv-
ers [Barret et al. 2009] to prove properties arising in the construction of
interactive proofs.

Zeno [Sonnex, Drossopoulou and Eisenbach 2012] is an inductive theorem
prover for the automatic verification of properties of Haskell programs. Zeno
only works with terminating functions and total and finite values.

One proposal for verifying Haskell programs was by translating them into
Agda 1 [Abel, Benke, Bove, Hughes et al. 2005]. Different monads can be
chosen for translating different Haskell programs. If a direct translation into
Agda 1 is possible, then the identity monad is chosen. If the Haskell program
terminates on a decidable subset of the input type, then the Maybe monad can
be chosen. For the translation, the approach adopted by the authors was to
use GHC’s (The Glorious Glasgow Haskell Compilation System) reduction of
full Haskell to its core language and then provide a translator from this core
language into Agda 1. Potentially, other monads can be used for dealing with
general recursion where the termination predicate is a priori undecidable,
although this possibility was not explored in the above paper.

Sparkle [de Mol, van Eekelen and Plasmeijer 2002] is a tactic-based proof
assistant for the lazy functional programming language Clean [Plasmeijer
and van Eekelen 1999]. Sparkle’s term language is Core-Clean—a subset of
Clean—and its specification language is a first-order logic. To state properties
of programs, the logic is extended with equalities on terms. Although predic-
ates and relations cannot be expressed in the specification language, a subset
of decidable ones can be modelled [de Mol, van Eekelen and Plasmeijer 2008;
de Mol 2009]. Given a goal—a property that has to be proven—automation
in Sparkle is based on a hint mechanism. This mechanism produces a list of
applicable tactics and it assigns a score to every tactic in the list. If a tactic
satisfies a threshold condition then this tactic is automatically applied. Since
every type represents a different domain of quantification, the specification
logic is a many-sorted logic. Also, because most of the off-the-shelf ATPs
use unsorted first-order logic, it would not be possible to use them directly
to automate the proof steps involving first-order or equational reasoning.

The aim of the Programatica project [Diatchki et al. 2001] was to integ-
rate programming with reasoning in Haskell programs. The programming lo-
gic used is a higher-order modal 𝜇-calculus called P-logic [W. L. Harrison and
Kieburtz 2005]. Given a Haskell program embedding one or more properties
expressed formally in P-logic, Plover—an automatic P-logic verifier [Kieburtz
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2007]—attempts to find a proof, without user interaction, for the embedding
properties. Unfortunately, it seems that work on the Programatica project
has been discontinued.

A related tool for proving correctness of imperative programs is Why3
[Filliâtre and Paskevich 2013; Bobot et al. 2014]. The specification lan-
guage is a typed first-order logic with several extensions such as recursive
definitions, algebraic data types, pattern matching, (co-)inductive predic-
ates, among others. The programming language can be seen as a dialect of
ML [Milner et al. 1997] extended for supporting pre- and post-conditions
annotations and restricted to first-order functions. The logical goals can be
proved using automatic and interactive tools including some ATPs, SMT
solvers and proof assistants. The programming language can also be used as
an intermediate language for program verification (see, for example, Marché
[2014]).

Many authors have considered the question of reasoning about general
recursive (and possibly partial) functions in dependent type theories that
only allow restricted forms of recursion. For an overview, the interested
reader should consult [Bove, Krauss and Sozeau 2012].

1.3 Preliminaries
Notation. In order to avoid cumbersome notations, some symbols and
names will be overloaded. For example, the names zero and succ will stand
for the data constructors of the inductively defined type of natural numbers
and for first-order logical terms of our programming logics, and the sym-
bol ⊥ will stand for the logical falsehood and for the bottom element in a
certain domain. However, it will be clear from the context in which sense
the symbols and names are used.

Haskell code. In the Haskell examples that we shall show, we make use of
the data type of natural numbers defined by

data Nat = Zero | Succ Nat.

In addition, we use some relations and functions on natural numbers which
we assume are defined in the usual way.

Source codes. The programs and examples described in this thesis are
available as Git repositories at GitHub:

• The extended version of Agda: https://github.com/asr/eagda.

• The Apia program: https://github.com/asr/apia.

• The Agda implementation of our programming logics, some first-order
theories and examples of verification of functional programs: https:
//github.com/asr/fotc.
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1. Introduction

The file README.md in the above repository contains the instructions for
the installation and use of our programs and examples.

Acronyms list. Since we frequently use acronyms, we present here a list
that contains the acronym, its definition and the page where it is defined for
the first time.

ABP Alternating bit protocol, p. 123
ATP Automatic theorem prover for first-order logic, p. 2
FOL Classical first-order logic with identity, p. 22
FOTC First-order theory of combinators, p. 71
LF Edinburgh Logical Framework, p. 22
LTC Logical theory of constructions, p. 49
LTPCF Logical theory for PCF, p. 50
PA Peano arithmetic, p. 37
SMT Satisfiability Modulo Theories, p. 6

1.4 Overview of the Thesis
In Chapter 2, we present a brief introduction to Agda, our interactive proof
assistant. This chapter may be skipped by readers familiar with Agda.

Chapter 3 describes our inductive approach to logical frameworks for
representing first-order logic and theories. This chapter introduces the idea
of having a logical framework which uses inductively defined data types and
pattern matching in Agda.

We would like to emphasise that Chapter 2 is an incomplete survey of
Agda and the inductive approach introduced in Chapter 3, although it is an
interesting idea, it is a variation of the well-known logical framework idea.
Therefore, we would like to warn to the reader that the main contributions
of this thesis begins in the next chapter.

Chapter 4 defines and formalises our programming logic for reasoning
about lazy PCF-programs.

In Chapter 5, we introduce and formalise a first-order version of the
previous programming logic and we extend it to deal with (co-)inductive
definitions of data types.

So far, all the proofs formalised in the previous chapters are interactive
ones. Chapter 6 describes our approach for combining interactive and auto-
matic proofs in first-order theories using our Apia program and our extended
version of Agda.

In Chapter 7, we use the programming logic described in Chapter 5 and
our approach for combining interactive and automatics proofs for verifying
some general (co-)recursive programs including nested recursive functions,
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§ 1.4. Overview of the Thesis

higher-order recursive functions, functions without a termination proof, and
guarded and unguarded co-recursive functions.

Chapter 8 contains our conclusions and future work.
Finally, Appendix A contains some definitions and theorems from do-

main theory used on this thesis. In Appendix B, we show the proofs of
equivalence of two inductive principles associated to an inductive predicate.
Appendix C contains the proofs of some streams properties. Appendix D
contains the combined proofs of some properties used in the correctness
proof of the mirror function. In Appendix E, we show a Haskell program for
the alternating bit protocol. Appendix F contains the combined proofs of
some properties used in the correctness proof of the alternating bit protocol.
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Chapter 2

A Brief Introduction to Agda

Agda version 2.4.0.2 (released on 2014-07-29) is the latest proof assistant
and dependently typed functional programming language in the ALF (see,
for example, Magnusson and Nordström [1994]) and Agda families developed
at Chalmers University of Technology and University of Gothenburg over
the last twenty-five years. Agda is an interactive system for constructing
proofs and programs, based on Martin-Löf’s type theory (see, for example,
Nordström, Petersson and Smith [1990]) and extended with records, para-
metrised modules, coverage and termination checkers, inductive families,
among other features.

This chapter contains a brief introduction to Agda, explaining the fea-
tures of Agda used in this thesis. A reader interested in learning more about
Agda and how to use it for proofs and programming can look at the gentle
introductions by Bove and Dybjer [2009], Norell [2009] and Abel [2009], and
at the Agda website.1 This chapter is based on these references. In § 2.1,
we describe general features of the system and in § 2.2, we describe a set of
combinators for equational reasoning.

As highlighted in the introduction of this thesis, this chapter may be
skipped by readers familiar with Agda.

2.1 Agda’s Features
Here we describe some features of Agda used in the formalisations developed
in this thesis.

Construction of programs and proofs interactively. Writing pro-
grams and proofs in a system based on dependent types like Agda would
be difficult without an interactive interface where the terms and the types
can be refined with the aid of the type checker. Agda has an Emacs [Stallman
et al. 2012] interface for this purpose.

1http://wiki.portal.chalmers.se/agda.
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Proof terms. Martin-Löf’s type theory (and Agda) is based on the propos-
itions-as-types principle, also called the Curry-Howard correspondence (see,
for example, Bove and Dybjer [2009] and Nordström and Smith [1984] for an
introduction to this principle in the context of Agda and Martin-Löf’s type
theory, respectively), in which a proposition is identified with the type of
its proofs. The colon “:” denotes type membership in Agda, that is, a : A
denotes that a is a term of type A. We say that a is a proof term if the type A
represents a proposition.
Unicode support. Agda supports Unicode characters. For example, we can
write A → B instead of A -> B for the type of functions from A to B, or we
can write ℕ instead of N for the type of natural numbers.
Infinite hierarchy of universes. In Agda, following terminology intro-
duced by Martin-Löf [1984], types are called sets. Let 𝜔 be the set of the
natural numbers; Agda has an infinite hierarchy of universes [Norell 2007b]
Set𝑖∈𝜔, such that, Set𝑖 : Set𝑖+1, that is, Set₀ is of type Set₁, Set₁ is of
type Set₂ and so on. The first universe Set₀—called the universe of small
types—is usually written as Set. The universe of small types will be the only
universe necessary in our formalisations.
Remark 2.1. From a discussion on the Agda mailing list, it seems that the
highest universe used in a “real” Agda development is Set₃.2

Modules. Modules are used for organising names of Agda definitions. An
Agda file does not needed one top-level module. If a top-level module is
defined then the file name and the name of this module should be the same.
Modules can be nested and parametrised.
Dependent function types. The dependent function type (x : A) → B
denotes the type of functions taking an argument x of type A and returning
a result of type B, where x may appear in B (Bove and Dybjer [2009] use the
notation (x : A) → B[x], which is more appropriate, but is not common in
Agda literature).

A special case is when x is itself a type. For example, we can define an
identity function for the small types by

id₁ : (A : Set) → A → A
id₁ A x = x.

The id₁ function is a dependent function that takes a small type A and an
element of A and returns the element.

For dependent function types, telescopic notation is allowed. For ex-
ample, (x : A) → (x' : A) → B can be replaced by (x x' : A) → B. Moreover,
we can also replace (x : A) → (y : B) → C by (x : A)(y : B) → C, and we
can use the alternative notation ∀ x → A instead of (x : A) → B, when the
domain A can be deduced by the type checker.

2https://lists.chalmers.se/pipermail/agda/2012/004882.html.
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§ 2.1. Agda’s Features

𝜆-notation. Agda supports various notations for 𝜆-abstraction. In this
thesis, we shall use the notation λ x → e.

Using this notation, the above id₁ function can be defined by

id₁ = λ A → λ x → x

or, by using an abbreviation, the function can be defined by

id₁ = λ A x → x.

Implicit arguments. Curly brackets “{,}” declare implicit arguments, that
is, arguments that do not appear explicitly in the terms.

For example, by using implicit arguments the identity function for the
small types can be defined by

id₂ : {A : Set} → A → A
id₂ x = x.

An implicit argument can be explicitly provided using the following syn-
tax: f {v} gives v as the left-most implicit argument to f and f {x = v}
gives v as the implicit argument called x to f. For example, we can define
the id₂ function by

id₂ {A} x = x.

By making an argument implicit does not mean Agda necessary will be
able to infer it. In this case, the argument is highlighted in yellow when
using (the standard configuration of) the Emacs interface.

Prefix, postfix, infix and mixfix operators. If the name of a function
contains underscores “_” the function can be used as a prefix, postfix, infix or
mixfix operator. The position of the underscore in the name of the function
indicates the place of the argument. For example, _+_ denotes an infix binary
operator that can be used either in the form m + n or as an prefix operator
in the form _+_ m n.

Indentation. In Agda, as in Haskell, indentation is important.

Associativity and precedence of operators. The keywords infix,
infixl and infixr are used to declare the associativity and precedence of
an operator. We shall show examples of the use of these keywords later.

Inductively defined types and families. Inductively defined types and
families are introduced with the data construct. The formation rule says
how we form a certain type from other types. The introduction rules say how
elements of the type are constructed from other elements. These introduction
rules are implemented by giving the name of the data constructors and their
types.

For example, the type of natural numbers is defined by
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data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ.

This declaration introduces the new small type ℕ in the first line—the forma-
tion rule—with a nullary constructor zero and a unary, recursive constructor
succ—the introduction rules.

Parametric inductive types are defined by providing a sequence of para-
meter declarations just after the name of the inductive type, that is, to the
left of the colon. All the parameter names become implicit arguments to the
data constructors.

For example, the type of lists parametrised by small types is defined by

infixr 5 _∷_
data List (A : Set) : Set where

[] : List A
_∷_ : A → List A → List A.

In this case, we defined that the type of the list former is

List : Set → Set

and we defined that the types of the data constructors are

[] : {A : Set} → List A
_∷_ : {A : Set} → A → List A → List A.

The constructor [] generates an empty list, and the constructor _∷_, a right-
associative constructor with precedence 5 (given by the line infixr 5 _∷_),
generates a new list by adding an element of type A to a list of elements of
type A.

The canonical example of an inductive family is the set of vectors, that
is, lists of elements of a certain type A of a certain length n, is defined by

data Vec (A : Set) : ℕ → Set where
[] : Vec A zero
_∷_ : {n : ℕ} → A → Vec A n → Vec A (succ n).

The type of Vec is Set → ℕ → Set and the type of Vec A is ℕ → Set, which
means that Vec A is a family of types indexed by the natural numbers;
in other words, for each natural number n, Vec A n is the set of lists of
elements of A of length n. Note that while the parameter A remains fixed
for the whole list, the index n varies for each constructor. Note also that
while the parameter is placed to the left of the colon, the index is placed to
the right of it. The constructor [] generates a vector of length 0, and the
constructor _∷_ generates a vector of length 𝑛 + 1 by adding an element to
a vector of length 𝑛.
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Remark 2.2. Constructor names are not required to be unique, so we can
use the same constructor names for vectors as we used for the List inductive
data type.

Another example of an inductive family is the family of finite sets defined
as follows:

data Fin : ℕ → Set where
fzero : {n : ℕ} → Fin (succ n)
fsucc : {n : ℕ} → Fin n → Fin (succ n).

This declaration introduces the family of types Fin indexed by the natural
numbers. For each n, the type Fin n contains exactly n elements.
Structurally recursive functions and pattern matching. Like in other
modern functional programming languages, we can define structurally re-
cursive functions by pattern matching over elements that belong to an in-
ductive data type.

For example, we can define addition of natural numbers by structural
recursion and case analysis over the first argument by

_+_ : ℕ → ℕ → ℕ
zero + n = n
succ m + n = succ (m + n)

and we can define the map function on lists of small types by
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs.

Where clauses. We can use a where clause to introduce local definition.
The local definition can be an abbreviation or a recursive definition by pat-
tern matching.
Wild card pattern. The underscore “_” is a wild card pattern when
matching patterns.

For example, the function f : ℕ → ℕ that returns 0 if its input is 0 and
returns 1 otherwise can be defined by

f : ℕ → ℕ
f zero = zero
f _ = succ zero.

The absurd pattern. The absurd pattern “()” is used when there are no
possible constructor patterns for a given argument.

For example, since there are not elements of type Fin zero

magic : {A : Set} → Fin zero → A
magic ()

is a function defined by using the absurd pattern.
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Mutual definitions. Agda accepts several kinds of mutual definitions. In
this thesis we shall use two of them, mutually inductive definitions of types
and families, and mutually recursive definitions of functions.

For example, to define the mutually recursive functions even and odd, we
first declare the functions

even : ℕ → Bool
odd : ℕ → Bool

and we then write their definitions

even zero = true
even (succ n) = odd n

odd zero = false
odd (succ n) = even n.

As an example of mutually defined inductive data types, to define the
types EvenList and OddList representing lists of natural numbers of even
and odd lengths respectively, we first declare the inductive data types

data EvenList : Set
data OddList : Set

and we then write their definitions

data EvenList where
[] : EvenList
_∷_ : ℕ → OddList → EvenList

data OddList where
_∷_ : ℕ → EvenList → OddList.

Adding axioms. Agda allows the addition of certain constants, without
actually defining them. In other words we can add axioms. The keyword
postulate is used for this purpose.

For example, we can postulate the type of the natural numbers and some
of its elements by

postulate
ℕ : Set
zero one two : ℕ.

Of course, after adding postulates the consistency of the system relies
on the user.
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Normalisation. By building interactive programs using the Emacs inter-
face, Agda programs are constructed incrementally with “holes” for parts
which have not yet been written. In the technical literature, a hole is a
meta-variable—a variable ranging over terms—standing for a term which is
not yet known. Agda performs type-checking and normalisation (simplifica-
tion) for programs with holes in them.

We shall illustrate the normalisation process with the construction of a
simple proof.

We start by defining the propositional equality on small types using an
inductive family.

infix 4 _≡_
data _≡_ {A : Set} : A → A → Set where

refl : {x : A} → x ≡ x.

Notation 2.3. We use the symbol “≡” for the propositional equality because
the symbol “=” stands for Agda definitional equality.

Next, we define the length and _++_ (concatenation) functions on lists.

length : {A : Set} → List A → ℕ
length [] = zero
length (x ∷ xs) = succ zero + length xs

infixr 5 _++_
_++_ : {A : Set} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys.

We now want to prove that for all lists xs and ys, length (xs ++ ys) is
equal to length xs + length ys.

We start by doing pattern matching on the list xs.

length-++ : {A : Set}(xs ys : List A) →
length (xs ++ ys) ≡ length xs + length ys

length-++ [] ys = ?
length-++ (x ∷ xs) ys = ?.

In the Emacs interface, the symbol “?” denotes an Agda goal, that is, some-
thing that the programmer has left to do.

By using its type checker algorithm, Agda informs us that, before norm-
alisation, the type of the first goal is

length ([] ++ ys) ≡ length [] + length ys.
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By using the first equation in the definition of _++_, the type checker nor-
malises the left hand side of this type to length ys, and by using the first
equations in the definitions of length and _+_, the type checker normalises
the right hand side of this type to length ys. In other words, after norm-
alisation, the type of the first goal becomes length ys ≡ length ys, which
can be proved using refl.

Now,

length ((x ∷ xs) ++ ys) ≡ length (x ∷ xs) + length ys

is the type of the missing goal before normalisation. By using the second
equations in the definitions of _++_ and length, the left hand side of this type
is normalised to succ (length xs ++ ys), and by using the second equations
in the definitions of _+_ and length, the right side of this type is normalised to
succ (length xs + length ys). In other words, the type of the goal becomes

succ (length (xs ++ ys)) ≡ succ (length xs + length ys)

which can be proved using the inductive hypothesis and a proof that, for all
natural numbers m and n, if m ≡ n then succ m ≡ succ n.

succCong : {m n : ℕ} → m ≡ n → succ m ≡ succ n
succCong refl = refl

length-++ [] ys = refl
length-++ (x ∷ xs) ys = succCong (length-++ xs ys).

Coverage and termination checkers. Since Agda can be used as a the-
orem prover, it must be logically consistent and hence, all the defined func-
tions should be terminating. For this purpose, Agda performs a coverage
check for pattern matching definitions and a termination check for (co-)re-
cursive calls; both checks are purely syntactical.

For example, Agda’s coverage checker rejects the partial function

head : {A : Set} → List A → A
head (x ∷ xs) = x

due to the missing pattern matching on the list constructor [].
Agda’s termination checker (and Martin-Löf’s type theory) accepts func-

tions which are structurally recursive in one argument at a time, as in the
functions showed so far. The termination checker, under certain conditions,
also accepts structurally recursive functions on several arguments simultan-
eously or permuted arguments [Lee, Jones and Ben-Amram 2001; Abel and
Altenkirch 2002].

For example, the Ackermman function
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ack : ℕ → ℕ → ℕ
ack zero n = succ n
ack (succ m) zero = ack m (succ zero)
ack (succ m) (succ n) = ack m (ack (succ m) n)

is accepted by Agda’s termination checker since it is structurally recursive
with respect to the lexicographic ordering on ℕ × ℕ.

If Agda’s termination checker cannot see that a function is terminating it
will be highlighted in light salmon when using (the standard configuration
of) the Emacs interface.

The Agda options --no-coverage-check and --no-termination-check dis-
able the coverage and termination checkers, respectively. However, since we
use Agda as a theorem prover, these options are not used in our formalisa-
tions.

2.2 Combinators for Equational Reasoning
Given the propositional equality for small types _≡_ defined in the previous
section, to directly construct a proof of a proposition like s ≡ t using the
properties of _≡_—reflexivity, symmetry, transitivity and substitutivity—can
be very tedious, and the resulting proof can be difficult to read.

By using Agda facilities for implicit arguments, mixfix operators and
Unicode, it is possible to define a set of combinators which allows us to
construct a proof term of type s ≡ t using an algebraic style. In fact, these
combinators can be defined for any binary relation that is both reflexive and
transitive, that is, a preorder [Norell 2007b; Mu, Ko and Jansson 2009].

Given a preorder _∼_

A : Set
_∼_ : A → A → Set
∼-refl : ∀ {x} → x ∼ x
∼-trans : ∀ {x y z} → x ∼ y → y ∼ z → x ∼ z

we define the following set of combinators for preorder reasoning, paramet-
rised by the preorder _∼_ [Mu, Ko and Jansson 2009]:

infixr 5 _∼⟨_⟩_
infix 5 _∎

_∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y ∼ z → x ∼ z
_ ∼⟨ x∼y ⟩ y∼z = ∼-trans x∼y y∼z

_∎ : ∀ x → x ∼ x
_∎ _ = ∼-refl.
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As Mu, Ko and Jansson [2009] point out, the combinator _∎ takes a term e
and produces a proof of e ∼ e using the reflexivity of the preorder _∼_. In
addition, the combinator _∼⟨_⟩_ takes three explicit arguments: e on the
left, a proof that e ∼ e' in the angle brackets, and a proof of e' ∼ e'' on
the right. This combinator produces a proof of e ∼ e'' using the transitivity
of _∼_.

Using the combinators for preorder reasoning, a chain reasoning on the
preorder _∼_ will be formalised as follow:

e₁ ∼⟨ reason₁ ⟩

⋮
eₙ₋₁ ∼⟨ reasonₙ₋₁ ⟩

eₙ ∎

where reasonᵢ : eᵢ ∼ eᵢ₊₁.
Given the associativity and precedence of the combinators, the above

chain reasoning is bracketed as

e₁ ∼⟨ reason₁ ⟩ ... (eₙ₋₁ ∼⟨ reasonₙ₋₁ ⟩ (eₙ ∎)).

The following example shows the use of the combinators for equational
reasoning.

Example 2.4. Let _*_ : ℕ → ℕ → ℕ be the multiplication operation for nat-
ural numbers. Given the properties

*-comm : ∀ m n → m * n ≡ n * m
*-rightIdentity : ∀ n → n * succ zero ≡ n

we can prove that succ zero is the left-identity for the multiplication using
the combinators for preorder and the fact that the propositional equality _≡_
is a preorder, in other words, we can parametrise these combinators with _≡_.

Renaming the combinator _∼⟨_⟩_ as _≡⟨_⟩_, the proof is given by

*-leftIdentity : ∀ n → succ zero * n ≡ n
*-leftIdentity n = succ zero * n ≡⟨ *-comm (succ zero) n ⟩

n * succ zero ≡⟨ *-rightIdentity n ⟩
n ∎
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Chapter 3

Using Agda with Data and
Pattern Matching as a
Logical Framework

In our approach to the computer-assisted verification of functional programs,
we use Agda to formalise our programing logics. In this chapter, we de-
scribe how to use Agda as a logical framework—a meta-language for the
formalisation of deductive systems [Pfenning 2002]—for first-order logic and
theories with equality. The first step in the representation of a first-order
theory is the representation of the underlying logic, for which we explore
two ways. In § 3.1, we set up our notation and conventions for first-order
logic. Moreover, we formalise first-order logic using the Edinburgh Logical
Framework approach. This is a survey of known techniques and how they
are implemented in Agda. In § 3.2, we introduce our inductive approach to
logical frameworks by formalising first-order logic using Agda’s support for
inductive notions.

One of the main strengths of Agda is its support for writing proofs, which
we shall call Agda’s proof engine and it consists of: (i) support for induct-
ively defined types, including inductive families, and function definitions us-
ing pattern matching on such types, (ii) normalisation during type-checking,
(iii) commands for refining proof terms, (iv) coverage checker and (v) ter-
mination checker. The inductive approach for representing first-order logic
is better because we benefit from Agda’s proof engine.

We represent a first-order theory using the inductive formalisation of
first-order logic in § 3.2 as the underlying logic, for the reasons explained
above. For representing the non-logic axioms of the theory, we can also
follow two ways: adding postulates or using inductive notions. In § 3.3,
we formalise first-order theories. In particular, we formalise group theory
and Peano arithmetic by adding postulates for representing their non-logic
axioms, and we also formalise Peano arithmetic using inductive notions for
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representing its non-logical axioms.
In § 3.4, we discuss the adequacy problem of our Agda inductive repres-

entation of first-order logic and theories.

3.1 Edinburgh Logical Framework Approach for
Representing First-Order Logic

We can represent a first-order theory in Agda along the lines of the Edin-
burgh Logical Framework (henceforth, LF). Like Agda, LF is a 𝜆-calculus
with dependent types and a few universes. LF has two universes, types and
kinds. As we have already mentioned in § 2.1, Agda has an infinite hierarchy
of universes, so we can use the first two to implement LF types and kinds,
but Set—its first universe—is all that is necessary to represent first-order
theories. A formal system is implemented in LF by adding constants of the
appropriate types. Some constants implement the syntactic constructs (for
example term formers, predicate and function symbols) of the formal sys-
tem, others implement proof terms for its axioms and inference rules. In this
way, we can use Agda as a logical framework in essentially the same manner
as we can use LF.

Remark 3.1. Agda’s underlying logical framework is Martin-Löf’s logical
framework [Nordström, Petersson and Smith 1990, Part III]. In relation
to the representation of FOL using the LF-approach both LF and Martin-
Löf’s logical framework are the same. But in other situations they lead to
different implementations, since they formalise new equations differently.
In Martin-Löf’s logical framework, we are allowed to add new equations
as equality judgments, whereas in LF this is not allowed. For example,
let A be a type. In Martin-Löf’s logical framework, we can add the equa-
tion l = r : A, but in LF this equation has to be implemented by adding a
constant e : I l r, where I represents a propositional equality for A.

We start by following the LF-approach for representing classical first-
order logic with identity (henceforth, FOL) in Agda. In the representation
of FOL using Agda’s support for inductive notions in § 3.2, we shall define
classical logic as intuitionistic logic with the principle of the excluded middle.
Each logical constant will be defined by a data declaration in Agda which
inductively generates the proof terms for the proposition in question. This
yields intuitionistic logic. The principle of the excluded middle will be added
afterwards as an axiom. This is the reason for the particular selection of the
logical constants in the following grammar, which generates the terms and
formulae of FOL.
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Terms ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑐 constant
∣ 𝑓(𝑡, … , 𝑡) function

Formulae ∋ 𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood
∣ 𝐴 ⊃ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 binary logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate

Abbreviations ¬𝐴 def= 𝐴 ⊃ ⊥ negation

𝑡 ≠ 𝑡′ def= ¬(𝑡 = 𝑡′) inequality

Conventions 3.2. The logical connectives obey the standard precedence
rules: ¬ has higher precedence than ∧, ∧ higher than ∨ and ∨ higher than ⊃.
In addition, they have higher precedence than the quantifiers. Conditional
is right-associative, so, for example, 𝐴1 ⊃ 𝐴2 ⊃ ⋯ ⊃ 𝐴𝑛 should be read
𝐴1 ⊃ (𝐴2 ⊃ ⋯ ⊃ 𝐴𝑛).

Following the LF-approach, we introduce each logical constant as a type
former, and each axiom and inference rule as a constants of the correspond-
ing type. For the purpose of the representation of FOL, we need no more
than a subset of all Agda expressions in normal form, with a few type formers
and constants. We use Agda normal forms because our Apia program works
with the Agda internal representation of expressions (see § 6.3), which is in
normal form.

The subset of Agda expressions required is generated by the following
grammar:

Normal Forms ∋ 𝑎 ∶∶= 𝑥 𝑎 ⋯ 𝑎 variable applied to terms
∣ 𝑐 𝑎 ⋯ 𝑎 constant applied to terms
∣ 𝜆𝑥.𝑎 𝜆-abstraction
∣ (𝑥 ∶ 𝑎) → 𝑎 dependent function type

(3.1)

Note that Agda has a common syntactic category of types and terms.
The required type formers and constants are

{N0, N1, +, ×, Σ, I, 𝑓∗, 𝑃 ∗, D}, (3.2)

where N0 represents the empty type, N1 the unit type, + the disjoint union
type, × the Cartesian product type, Σ the dependent product type and I the
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identity type. The symbol 𝑓∗ represents a function symbol 𝑓 , 𝑃 ∗ a predicate
symbol 𝑃 and D the domain of quantification (or domain of discourse).
Following the propositions-as-types principle, we translate both terms and
formulae of FOL into Agda expressions by [Martin-Löf 1998]

Terms 𝑥 ↦ 𝑥∗ ∶ D
𝑐 ↦ 𝑐∗ ∶ D

𝑓(𝑡1, … , 𝑡𝑛) ↦ 𝑓∗ 𝑡∗
1 ⋯ 𝑡∗

𝑛

Formulae ⊥ ↦ N0
⊤ ↦ N1

𝐴 ∨ 𝐵 ↦ 𝐴∗ + 𝐵∗

𝐴 ∧ 𝐵 ↦ 𝐴∗ × 𝐵∗

𝐴 ⊃ 𝐵 ↦ 𝐴∗ → 𝐵∗

∀𝑥.𝐴 ↦ (𝑥∗ ∶ D) → 𝐴∗

∃𝑥.𝐴 ↦ Σ D (𝜆𝑥∗.𝐴∗)
𝑡 = 𝑡′ ↦ I D 𝑡∗ 𝑡′∗

𝑃(𝑡1, … , 𝑡𝑛) ↦ 𝑃 ∗ 𝑡∗
1 ⋯ 𝑡∗

𝑛

(3.3)

Notation 3.3. We shall use a logical notation instead of a type-theoretic
notation in our implementation of the type formers and constants (3.2). In
particular, we shall use the symbol ⊥ for the empty type N0, the symbol ⊤ for
the unit type N1, the symbol ∨ for the disjoint union type +, the symbol ∧
for the Cartesian product type ×, the symbol ∃ for the dependent product
type Σ on the domain D and the symbol ≡ for the identity type I on the
domain D.

Now, we explain our formalisation of FOL showing the implementation
of some logical constants. In order to implement the LF-approach in Agda,
we shall postulate each required type former and constant (3.2). In Agda,
first-order formulae will be represented by the type Set. We start with
the implementation of disjunction. The inference rules for disjunction in
Gentzen’s natural deduction (see, for example, van Dalen [2004]) are given
by (3.4), where ∨I1 and ∨I2 are the introduction rules, and ∨E is the elim-
ination rule.

𝐴 (∨I1)𝐴 ∨ 𝐵
𝐵 (∨I2)𝐴 ∨ 𝐵 𝐴 ∨ 𝐵

[𝐴]
⋮

𝐶

[𝐵]
⋮

𝐶 (∨E)𝐶

(3.4)

Following the LF-approach and based on the FOL to Agda translation (3.3),
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we implement disjunction by the disjoint union type.

postulate
_∨_ : Set → Set → Set
inj₁ : {A B : Set} → A → A ∨ B (3.5)
inj₂ : {A B : Set} → B → A ∨ B
case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C.

The first constant _∨_ implements the formation rule. This constant rep-
resents disjunction by an infix operator that takes two formulae (that is, two
small types) and returns the formula (that is, an element in Set) of proofs
representing the disjunction of the two formulae. The second constant inj₁
implements the introduction rule ∨I1 in (3.4). Given two small types A and B,
the constant inj₁ states that if we have a proof of A, then we can construct a
proof of the disjunction of A and B. The third constant inj₂ implements the
introduction rule ∨I2 in (3.4). The constant inj₂ is similar to the previous
one, but in this case we start from a proof of B instead of a proof of A. The
last constant case implements the elimination rule ∨E in (3.4). Given three
formulae A, B and C, the constant case constructs a proof of C from a method
that takes a proof of A into a proof of C, a method that takes a proof of B
into a proof of C, and a proof of the disjunction of A and B.

Remark 3.4. The inference rules ∨I1, ∨I2 and ∨E are logical schemata—
sets of first-order formulae—one for each instance of 𝐴, 𝐵 and 𝐶. Because
Agda is a higher-order logic, we could represent each schema by one depend-
ent function type using implicit quantification over Set. In § 6.3.1, we shall
discuss how the Apia program deals with logical schemata.

Example 3.5. Using the implementation of disjunction in (3.5), the proof
of the commutativity of disjunction is represented by the following Agda
definition

∨-comm : {A B : Set} → A ∨ B → B ∨ A
∨-comm = case inj₂ inj₁.

Now, to implement classical FOL—it will be the underlying logic for our
programming logics because most ATPs implement it—we postulate the
principle of the excluded middle. Recalling that ¬𝐴 is an abbreviation of
𝐴 ⊃ ⊥, that is,

postulate ⊥ : Set

¬_ : Set → Set
¬ A = A → ⊥

the implementation of the principle of the excluded middle is given by

postulate pem : {A : Set} → A ∨ ¬ A.
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We now continue with the implementation of the quantifiers and the
FOL-equality. First, we need to postulate the existence of the domain of
quantification.

postulate D : Set.

As can be seen in (3.3), the universal quantifier on the domain D is
implemented by the dependent function type (x : D) → A. We shall use
the alternative notation ∀ x → A when the domain D can be deduced by
Agda’s type checker.

The introduction rule ∃I and the elimination rule ∃E for the existential
quantifier are given by (3.6), with the usual side condition for the rule ∃E,
that is, 𝑥 is not free in 𝐵 or in any of the assumptions of the proof of 𝐵
other than 𝐴(𝑥) (see, for example, van Dalen [2004]).

𝐴(𝑡) (∃I)∃𝑥.𝐴(𝑥) ∃𝑥.𝐴(𝑥)

[𝐴]
⋮

𝐵 (∃E)𝐵

(3.6)

The existential quantifier on the domain D is implemented by the dependent
product type.

postulate
∃ : (A : D → Set) → Set
_,_ : {A : D → Set}(t : D) → A t → ∃ A
∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B.

The formation rule for the existential quantifier is implemented by the oper-
ator ∃ that takes a propositional function and returns a small type represent-
ing the proofs of the corresponding existential proposition. The constant _,_
implements the introduction rule ∃I and the constant ∃-elim implements the
elimination rule ∃E in (3.6). The constant _,_ establishes that a proof of an
existential proposition is a pair whose first component is a term of type D,
called the witness, and whose second component is a proof that the witness
satisfies the proposition. Given proofs of both an existential proposition ∃ A
and a method that constructs a proof of B from a proof of A x, the constant
∃-elim returns a proof of the formula B. Note that the side condition in (3.6)
is implemented by the type of the constant ∃-elim. Note also that the rules ∃I
and ∃E are logical schemata too—there is an instance for each propositional
function—which are represented using an implicit quantification over the
type of propositional functions.

Notation 3.6. It is possible to replace ∃ (λ x → e) by ∃[ x ] e using Agda’s
support for declaring user-defined syntax available since Agda version 2.2.8
(released on 2010-09-27). We use this notation in this thesis.
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The following example shows the use of the implementation of the quan-
tifiers for proving a FOL theorem.

Example 3.7. Let 𝐴(𝑥, 𝑦) be a propositional function. The proof of

∃𝑥.∀𝑦.𝐴(𝑥, 𝑦) ⊃ ∀𝑦.∃𝑥.𝐴(𝑥, 𝑦),

is represented by

∃∀ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀ h y = ∃-elim h (λ {x} ah → x , ah y).

In the above proof, we applied the elimination rule ∃-elim to the existential
hypothesis h of type ∃[ x ](∀ y → A x y), and to a proof of ∃[ x ] A x y.
The last proof is based on the auxiliary hypothesis ∀ y → A x y.

Remark 3.8. We emphasise that in our implementation of FOL in Agda,
it is only a subset of the Agda types and terms that correspond to FOL-for-
mulae and FOL-proofs, respectively. Our implementation of the existential
quantifier enables the construction of Agda terms which do not represent
anything in FOL.

For example, the use of the elimination rule ∃-elim makes it possible to
build the following term:

non-FOL : {A : D → Set} → ∃ A → D
non-FOL h = ∃-elim h (λ {x} _ → x).

This term does not represent anything in FOL, simply because in FOL there
is no such thing as a function from a formula to an element in the domain.
This issue is related to logical frameworks that handle proof terms. Our
implementation makes it possible to access the first argument of a proof
term of an existential proof, and we can use this proof term to build an
element of D.

Unfortunately, Agda cannot tell us if we are using our implementation of
the existential quantifier strictly inside FOL, so it is the user’s responsibility
to avoid the non-FOL uses of our implementation.

Remark 3.9. When working with classical logic and the elimination rule
for the existential quantifier, it is necessary to keep in mind that the term
of type D obtained by using the elimination ∃-elim on an existential proof
using the principle of the excluded middle is not a witness in the sense of
intuitionistic logic.

Remark 3.10. In FOL, the domain of quantification is non-empty (see, for
example, Mendelson [1997]), but this is not the case in our implementation.
For example, let 𝐴(𝑥) be a propositional function, the theorem

∀𝑥.𝐴(𝑥) ⊃ ∃𝑥.𝐴(𝑥) (3.7)
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cannot be proved in our implementation of FOL without postulating an
element d of type D. This will not be an issue in our programming logics
because their domains of quantification will be non-empty.

Now, we continue with the implementation of the FOL-equality (called
propositional equality). The introduction rule (reflexivity of equality) and
the elimination rule (substitutivity property) for the propositional equality
are given by

(refl)𝑥 = 𝑥 𝑥 = 𝑦 𝐴(𝑥) (subst)𝐴(𝑦)
The propositional equality is implemented by the identity type over the
domain D.

postulate
_≡_ : D → D → Set
refl : ∀ {x} → x ≡ x
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y.

The formation rule for the propositional equality over the domain D is rep-
resented by the predicate _≡_ that takes two elements in D and returns the
set of proofs that the two elements of D are equal. Using the introduction
rule refl, we can only construct proofs that an element is equal to itself.
The elimination rule subst states that, if two elements of D are equal, and if
we are able to prove an arbitrary propositional function A over D for the first
of these two elements, then we can produce a proof that the second element
also satisfies the propositional function A.

Using the implementation of the propositional equality, we can prove
that it is an equivalence relation, that is, the propositional equality is a
reflexive, symmetric and transitive relation. In the next example, we show
the proof of symmetry.

Example 3.11. We prove that the propositional equality is a symmetric
relation.

sym : ∀ {x y} → x ≡ y → y ≡ x
sym {x} h = subst (λ t → t ≡ x) h refl.

The proof of symmetry uses the elimination rule for equality—subst—
which requires three arguments. The first is the propositional function
λ t → t ≡ x. The second is a proof that x ≡ y, given by the hypothesis. The
third argument is a proof of the propositional function λ t → t ≡ x applied
to x, that is, x ≡ x, which is an instance of reflexivity of the equality.

We could use the LF-approach—postulating each logical constant as a
type former, and its introduction and elimination rules as constants of the
corresponding types—for implementing the missing logic constants.

28



§ 3.2. Inductive Approach for Representing First-Order Logic

3.2 Inductive Approach for Representing
First-Order Logic

The main disadvantage of representing FOL (and first-order theories) using
the LF-approach above is that it makes limited use of Agda’s support for
writing proofs. To benefit from Agda’s support for inductive notions, which it
is not possible when we use postulates, we represent FOL using this support.

When using inductive notions for representing FOL, we need to choose
between using a shallow or a deep embedding (see, for example, Garillot
and Werner [2007]). In a shallow embedding, the FOL-formulae are writ-
ten directly using the constants underlying Agda as a logical framework
(see § 3.4.1). On the other hand, in a deep embedding, the FOL-formulae
are represented using an inductive data type. In this thesis, we use a shal-
low embedding for representing FOL because: (i) this avoid us explicitly deal
with binding of variables, (ii) we do not prove meta-theorems about FOL and
(iii) we do not need to reason by induction over the structure of FOL.

Although intuitionistic logical constants are naturally inductive notions,
since their sets of canonical proofs are inductively generated by the intro-
duction rules, this is not the case for classical logic. The logical constants of
classical logic are not normally inductive notions in the same way. However,
since classical logic is intuitionistic logic plus the principle of the excluded
middle, we can use the implementation of intuitionistic logical constants as
inductive notions and then add the principle of the excluded middle as an
axiom.

In our inductive approach to logical frameworks, the formation and the
introduction rules of the logical constants are represented by inductive types,
and their elimination rules will not be postulated, but instead defined by
pattern matching. All these rules have the same type than in the LF-ap-
proach. Moreover, we shall use postulates in this approach when necessary.

In the inductive approach, the formation and the introduction rules for
disjunction are defined by the parametric inductive data type

data _∨_ (A B : Set) : Set where
inj₁ : A → A ∨ B
inj₂ : B → A ∨ B.

As we already mentioned in § 2.1, the above declaration introduce three
constants to the theory

_∨_ : Set → Set → Set
inj₁ : {A B : Set} → A → A ∨ B
inj₂ : {A B : Set} → B → A ∨ B

that is, it gives us direct access to the formation and introduction rules for
disjunction in exactly the same way as the LF-approach (see Eq. 3.5). On
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the other hand, we do not get the elimination rule automatically. This rule
has to be defined separately by pattern matching on a proof of A ∨ B

case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C
case f g (inj₁ a) = f a
case f g (inj₂ b) = g b.

Here, the type of the new constant case is the same as in the LF-represent-
ation of FOL (see Eq. 3.5). In addition, we now get two proof normalisation
equations, not present in the LF-representation. However, these equations
do not change the set of provable formulae.

The formation and the introduction rules for the existential quantifier
are defined by the parametric inductive type

data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A.

Once again, we need to define the elimination rule. We define this rule by
pattern matching on a proof of ∃ A

∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B
∃-elim (_ , Ax) h = h Ax.

The formation and the introduction rules for the FOL-equality—the iden-
tity type on D—are defined by the inductive family

data _≡_ (x : D) : D → Set where
refl : x ≡ x

and its elimination rule is defined using pattern matching on a proof that
x ≡ y

subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A refl Ax = Ax.

Since the types of the formation, introduction and elimination rules of
the logical constants defined using the inductive and the LF-approaches have
the same type, the proofs of the theorems in Examples 3.5, 3.7, and 3.11 are
the same using the inductive approach.

If we only use pattern matching to define the elimination rules associated
with the logical constants, we arrive at an Agda implementation of FOL that
should be equivalent to the LF-implementation (see § 3.4.1). However, to
make full use of Agda’s support for proof by pattern matching, we shall
not restrict ourselves to using the elimination rules above. Instead, we shall
allow proofs by pattern matching in general, as long as they are accepted by
Agda’s coverage and termination checker. Strictly speaking we are obliged
to show that such uses of pattern matching can be reduced to the standard
elimination rules. For most of our uses of pattern matching this is obvious,
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but it would be hard to show a general theorem about the reduction of
Agda’s general notion of pattern matching to elimination rules (see § 3.4).

Using Agda’s full support for proofs by pattern matching we can rewrite
the proofs in Examples 3.5, 3.7 and 3.11 as it is shown by the following
example.

Example 3.12. The proof of the commutativity of disjunction is given by

∨-comm : {A B : Set} → A ∨ B → B ∨ A
∨-comm (inj₁ a) = inj₂ a
∨-comm (inj₂ b) = inj₁ b

where we pattern match on a proof that A ∨ B.
The proof of the theorem in Example 3.7 is given by

∃∀ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y
∃∀ (x , Ax) y = x , Ax y

where we pattern match on a proof that ∃[ x ](∀ y → A x y).
Finally, if we pattern match on a proof that x ≡ y, the proof that the

FOL-equality is a symmetric relation is given by

sym : ∀ {x y} → x ≡ y → y ≡ x
sym refl = refl.

The main difference between the three proofs above and those using the
LF-approach is that we did not need to use the elimination rules of the
logical constants. In addition, observe that, thanks to the pattern matching
facility feature, the proofs presented here look simpler.

The representation of FOL using the propositions-as-types principle and
Agda’s inductive notions is well known (see Bove and Dybjer [2009], for a
gentle introduction to how this can be done) and therefore we omit a detailed
presentation of the missing logic constants using the inductive approach. The
complete representation of FOL used in this thesis is shown in Fig. 3.1.

3.3 Inductive Representation of First-Order
Theories

Using the inductive representation of FOL described in § 3.2 as the under-
lying logic, we can represent (the non-logical axioms of) first-orders theories
in two ways: (i) by adding postulates, that is, we formalise a first-order the-
ory representing its domain of quantification, its signature elements, and its
axioms by postulated constants of the appropriate types, or (ii) by using in-
ductive notions, that is, we formalise a first-order theory using an inductive
data type to represent the domain of quantification, and functions defined
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Falsehood data ⊥ : Set where

⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()

Truth data ⊤ : Set where tt : ⊤

Disjunction data _∨_ (A B : Set) : Set where
inj₁ : A → A ∨ B
inj₂ : B → A ∨ B

case : ∀ {A B} → {C : Set} →
(A → C) → (B → C) → A ∨ B → C

case f g (inj₁ a) = f a
case f g (inj₂ b) = g b

Conjunction data _∧_ (A B : Set) : Set where
_,_ : A → B → A ∧ B

∧-proj₁ : ∀ {A B} → A ∧ B → A
∧-proj₁ (a , _) = a

∧-proj₂ : ∀ {A B} → A ∧ B → B
∧-proj₂ (_ , b) = b

Conditional A → B (non-dependent function type)

Negation ¬_ : Set → Set
¬ A = A → ⊥

Principle of the ex-
cluded middle

postulate pem : ∀ {A} → A ∨ ¬ A

Domain of discourse postulate D : Set

Universal quantifier (x : D) → A (dependent function type)

Existential quantifier data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A

∃-elim : {A : D → Set}{B : Set} →
∃ A → (∀ {x} → A x → B) → B

∃-elim (_ , Ax) h = h Ax

Equality data _≡_ (x : D) : D → Set where refl : x ≡ x

subst : (A : D → Set) → ∀ {x y} → x ≡ y →
A x → A y

subst A refl Ax = Ax

Fig. 3.1: Representation of FOL using Agda’s inductive notions.
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by structural recursion to represent the operations. As a result of using the
inductive representation of FOL and the possibility of using postulates for
representing the non-logical axioms of a theory in (i), our inductive repres-
entation of first-order theories has postulates. In § 3.3.1, we formalise group
theory using (i). In § 3.3.2 and § 3.3.3, we apply (i) and (ii) to formalise
Peano arithmetic, respectively, and compare them.
Remark 3.13. We shall use the combinators from § 2.2 for implement-
ing the equational reasoning in first-order theories with equality, where we
rename the combinator _∼⟨_⟩_ as _≡⟨_⟩_.

3.3.1 Inductive Representation of Group Theory: Using
Postulates for Representing the Non-Logical Axioms

We show an example of adding postulates to the inductive representation of
FOL for representing a first-order theory: group theory.

Let 𝔏 = {·,−1 , 𝜀} be the formal language of group theory, where · is a left-
associative binary function symbol (multiplication operation), −1 is a unary
function symbol (inverse function), and 𝜀 is a constant symbol (identity
element with respect to the multiplication operation). The theory of groups
has the following non-redundant axioms (see, for example, Hodges [1993]):

∀𝑎 𝑏 𝑐. 𝑎 · 𝑏 · 𝑐 = 𝑎 · (𝑏 · 𝑐) (associativity)
∀𝑎. 𝜀 · 𝑎 = 𝑎 (left-identity)

∀𝑎. 𝑎−1 · 𝑎 = 𝜀 (left-inverse)

Let us consider FOL as in Fig. 3.1 where the domain of quantification
is called G. We start our formalisation of group theory by postulating the
existence of an identity element, a left-associative product operation and an
inverse function.

infix 11 _⁻¹
infixl 10 _·_

postulate
ε : G
_·_ : G → G → G
_⁻¹ : G → G.

Using the above signature, the axioms of group theory are implemented by

postulate
assoc : ∀ a b c → a · b · c ≡ a · (b · c)
leftIdentity : ∀ a → ε · a ≡ a (3.8)
leftInverse : ∀ a → a ⁻¹ · a ≡ ε.

In the following example, we show the formalisation of a textbook-style
proof.
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Example 3.14. Let us consider Mac Lane and Birkhoff’s [1999] proof that
a right-identity element is unique.

Theorem. Let (G, ·,−1 , 𝜀) be a group. Any right-identity 𝑟 is equal to 𝜀, that
is, for all 𝑎 ∈ G, 𝑎 · 𝑟 = 𝑎 implies 𝑟 = 𝜀.

Proof.

1. 𝑟 = 𝜀 · 𝑟 (left-identity)
2. 𝜀 · 𝑟 = 𝜀 (by hypothesis, 𝑟 is a right-identity)
3. 𝑟 = 𝜀 (transitive property for equality in 1, 2)

Proofs in mathematical textbooks, although rigorous, often leave some
trivial details for the reader to complete. In this case, the proof omits the use
of the symmetric property for the equality in step 1. In our formalisation,
we need to be explicit about this step and therefore we use symmetry on a
proof that e · r ≡ r, which is the leftIdentity postulate.

rightIdentityUnique : ∀ r → (∀ a → a · r ≡ a) → r ≡ ε
rightIdentityUnique r h = trans (sym (leftIdentity r)) (h ε).

In the following example, we show how to use the combinators for equa-
tional reasoning (see remark 3.13) in the formalisation of a textbook-style
proof.

Example 3.15. We prove the left-cancellation property following Mac Lane
and Birkhoff’s [1999] proof.

Theorem. Let (G, ·,−1 , 𝜀) be a group. For all 𝑎, 𝑏, 𝑐 ∈ G, 𝑎 · 𝑏 = 𝑎 · 𝑐 implies
𝑏 = 𝑐.

Proof.

1. 𝑎−1 · (𝑎 · 𝑏) = 𝑎−1 · (𝑎 · 𝑐) (by hypothesis)
2. 𝑎−1 · 𝑎 · 𝑏 = 𝑎−1 · 𝑎 · 𝑐 (associativity)
3. 𝜀 · 𝑏 = 𝜀 · 𝑐 (left-inverse)
4. 𝑏 = 𝑐 (left-identity)

A few details have been omitted here too. For example, the hypothesis of
the theorem does not completely justify why we could substitute the equal
terms 𝑎·𝑏 and 𝑎·𝑐 in step 1. To justify this step in the formal proof, we use the
fact that the propositional equality is a congruence relation—it is an equi-
valence relation compatible with the group structure—on groups [Birkhoff
and Mac Lane 1977], which is implemented by the following properties:

·-leftCong : ∀ {a b c} → a ≡ b → a · c ≡ b · c
·-leftCong refl = refl
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·-rightCong : ∀ {a b c} → b ≡ c → a · b ≡ a · c
·-rightCong refl = refl

⁻¹-cong : ∀ {a b} → a ≡ b → a ⁻¹ ≡ b ⁻¹
⁻¹-cong refl = refl.

In the formalisation of the proof, we reread the textbook proof as a chain
reasoning from the left-hand side to the right-hand side of step 4: the left-
hand side through steps 3, 2 and 1 and then the right-hand side through
steps 1, 2 and 3.

1 leftCancellation : ∀ {a b c} → a · b ≡ a · c → b ≡ c
2 leftCancellation {a} {b} {c} h =
3 b ≡⟨ sym (leftIdentity b) ⟩
4 ε · b ≡⟨ ·-leftCong (sym (leftInverse a)) ⟩
5 a ⁻¹ · a · b ≡⟨ assoc (a ⁻¹) a b ⟩
6 a ⁻¹ · (a · b) ≡⟨ ·-rightCong h ⟩
7 a ⁻¹ · (a · c) ≡⟨ sym (assoc (a ⁻¹) a c) ⟩
8 a ⁻¹ · a · c ≡⟨ ·-leftCong (leftInverse a) ⟩
9 ε · c ≡⟨ leftIdentity c ⟩

10 c ∎

As can be seen in line 6, the justification of step 1 of the textbook proof
uses the right-compatibility of the propositional equality with the multi-
plication operation ·-rightCong, with a proof of a · b ≡ a · c given by the
hypothesis of the theorem.

When formalising proofs in first-order theories it is useful to introduce
defined operators as illustrated by the following example.

Example 3.16. We prove that the inverse of a commutator is a commut-
ator.

Theorem. Let (G, ·,−1 , 𝜀) be a group. The commutator of 𝑎, 𝑏 ∈ G is defined
by [𝑎, 𝑏] = 𝑎−1 · 𝑏−1 · 𝑎 · 𝑏. For all 𝑎, 𝑏 ∈ G, the inverse of the commutator
[𝑎, 𝑏] is the commutator [𝑏, 𝑎] [Kurosh 1960].

In the formalisation of the proof of this theorem, we start for defining
the group commutator by

[_,_] : G → G → G
[ a , b ] = a ⁻¹ · b ⁻¹ · a · b.

After proving the right-inverse property given by

∀𝑎. 𝑎 · 𝑎−1 = 𝜀,
the interactive proof of theorem consists of 15 tedious proof steps of equa-
tional reasoning.
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commutatorInverse : ∀ a b → [ a , b ] · [ b , a ] ≡ ε
commutatorInverse a b =

a ⁻¹ · b ⁻¹ · a · b · (b ⁻¹ · a ⁻¹ · b · a)
≡⟨ assoc (a ⁻¹ · b ⁻¹ · a) b (b ⁻¹ · a ⁻¹ · b · a) ⟩

a ⁻¹ · b ⁻¹ · a · (b · (b ⁻¹ · a ⁻¹ · b · a))
≡⟨ ·-rightCong (·-rightCong (assoc (b ⁻¹ · a ⁻¹) b a)) ⟩

a ⁻¹ · b ⁻¹ · a · (b · (b ⁻¹ · a ⁻¹ · (b · a)))
≡⟨ ·-rightCong (·-rightCong (assoc (b ⁻¹) (a ⁻¹) (b · a))) ⟩

a ⁻¹ · b ⁻¹ · a · (b · (b ⁻¹ · (a ⁻¹ · (b · a))))
≡⟨ ·-rightCong (sym (assoc b (b ⁻¹) (a ⁻¹ · (b · a)))) ⟩

a ⁻¹ · b ⁻¹ · a · (b · b ⁻¹ · (a ⁻¹ · (b · a)))
≡⟨ ·-rightCong (·-leftCong (rightInverse b)) ⟩

a ⁻¹ · b ⁻¹ · a · (ε · (a ⁻¹ · (b · a)))
≡⟨ ·-rightCong (leftIdentity (a ⁻¹ · (b · a))) ⟩

a ⁻¹ · b ⁻¹ · a · (a ⁻¹ · (b · a))
≡⟨ assoc (a ⁻¹ · b ⁻¹) a (a ⁻¹ · (b · a)) ⟩

a ⁻¹ · b ⁻¹ · (a · (a ⁻¹ · (b · a)))
≡⟨ ·-rightCong (sym (assoc a (a ⁻¹) (b · a))) ⟩

a ⁻¹ · b ⁻¹ · (a · a ⁻¹ · (b · a))
≡⟨ ·-rightCong (·-leftCong (rightInverse a)) ⟩

a ⁻¹ · b ⁻¹ · (ε · (b · a))
≡⟨ ·-rightCong (leftIdentity (b · a)) ⟩

a ⁻¹ · b ⁻¹ · (b · a)
≡⟨ assoc (a ⁻¹) (b ⁻¹) (b · a) ⟩

a ⁻¹ · (b ⁻¹ · (b · a))
≡⟨ ·-rightCong (sym (assoc (b ⁻¹) b a)) ⟩

a ⁻¹ · ((b ⁻¹ · b) · a)
≡⟨ ·-rightCong (·-leftCong (leftInverse b)) ⟩

a ⁻¹ · (ε · a)
≡⟨ ·-rightCong (leftIdentity a) ⟩

a ⁻¹ · a
≡⟨ leftInverse a ⟩

ε ∎

When reasoning with our programming logics, the formalised equational
reasoning is often done in the manner described in the examples above. On
the other hand, in the context of the first-order theories, this kind of reas-
oning could be automated by the ATPs (in particular, all the theorems in
the above examples are automatically proved by the ATPs from the appro-
priate axioms). As explained in the introduction of this thesis, one of the
achievements of our work is the combination of interactive and automatic
reasoning in formalised first-order theories for reasoning about functional
programs. In Chapter 6, we shall describe how to get the most out of the
integration of our Agda representation of first-order theories with the ATPs,
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and how this integration was implemented.

3.3.2 Inductive Representation of Peano Arithmetic: Using
Postulates for Representing the Non-Logical Axioms

We formalise first-order Peano arithmetic (henceforth, PA) using postulates
for representing its non-logic axioms.

Keeping in mind that there are different (equivalent) sets of axioms for
PA, let 𝔏 = {succ, +, ∗, 0} be the formal language of PA, where succ is a
unary function symbol (successor function), + and ∗ are two binary function
symbols (addition and multiplication operations, respectively), and 0 is a
constant symbol (zero element). The axioms of PA are (see, for example,
Machover [1996] and Hájek and Pudlák [1998]):

∀𝑛. 0 ≠ succ(𝑛) (PA1)
∀𝑚 𝑛. succ(𝑚) = succ(𝑛) ⊃ 𝑚 = 𝑛 (PA2)

∀𝑛. 0 + 𝑛 = 𝑛 (PA3)
∀𝑚 𝑛. succ(𝑚) + 𝑛 = succ(𝑚 + 𝑛) (PA4)

∀𝑛. 0 ∗ 𝑛 = 0 (PA5)
∀𝑚 𝑛. succ(𝑚) ∗ 𝑛 = 𝑛 + (𝑚 ∗ 𝑛) (PA6)

𝐴(0) ⊃ (∀𝑛.𝐴(𝑛) ⊃ 𝐴(succ(𝑛))) ⊃ ∀𝑛.𝐴(𝑛),
for all formulae 𝐴 (axiom schema of induction)

To formalise PA, we use FOL as in Fig. 3.1 where the domain of quanti-
fication is called ℕ. Writing zero for the constant 0, our implementation of
axioms PA1 to PA6 is given by

infixl 10 _*_
infixl 9 _+_

postulate
zero : ℕ
succ : ℕ → ℕ
_+_ _*_ : ℕ → ℕ → ℕ

postulate
PA₁ : ∀ {n} → zero ≢ succ n
PA₂ : ∀ {m n} → succ m ≡ succ n → m ≡ n
PA₃ : ∀ n → zero + n ≡ n (3.9)
PA₄ : ∀ m n → succ m + n ≡ succ (m + n)
PA₅ : ∀ n → zero * n ≡ zero
PA₆ : ∀ m n → succ m * n ≡ n + m * n.
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Agda’s higher-order logic features allow us to implement the axiom
schema of induction by an explicit quantification over the type of proposi-
tional functions.

postulate
ℕ-ind : (A : ℕ → Set) →

A zero → (3.10)
(∀ n → A n → A (succ n)) →
∀ n → A n.

In the following example, we use the proof of the commutativity of ad-
dition to show the use of the inductive approach—using postulates for rep-
resenting PA axioms—when proving properties of PA.

Example 3.17.

Theorem. For all 𝑚, 𝑛 ∈ ℕ, 𝑚 + 𝑛 = 𝑛 + 𝑚.

Proof. The proof is by induction on 𝑚, that is, we use the axiom of induction
on the propositional function

𝐴(𝑚) def= ∀𝑛. 𝑚 + 𝑛 = 𝑛 + 𝑚.

The proof of the base case 𝐴(0) is given by

0 + 𝑛 = 𝑛 (PA3)
= 𝑛 + 0 (right-identity of addition, that is, 𝑛 + 0 = 𝑛)

The proof of the inductive step, ∀𝑚.𝐴(𝑚) ⊃ 𝐴(succ(𝑚)), is given by

succ(𝑚) + 𝑛 = succ(𝑚 + 𝑛) (PA4)
= succ(𝑛 + 𝑚) (induction hypothesis)
= 𝑛 + succ(𝑚) (arithmetical property)

Let us implement 𝐴(𝑚) by the propositional function

A : ℕ → Set
A m = ∀ n → m + n ≡ n + m.

In the formalisation of this proof, we need to consider some details which
were omitted.

Given a proof of the right-identity of addition

+-rightIdentity : ∀ n → n + zero ≡ n

and the definition
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+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity = PA₃

the two steps used in the proof of the base case are formalised using the
combinators for equational reasoning.

A0 : A zero
A0 n = zero + n ≡⟨ +-leftIdentity n ⟩

n ≡⟨ sym (+-rightIdentity n) ⟩
n + zero ∎

Now, given a proof of the compatibility of the propositional equality with
the successor function

succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n

and a proof of the arithmetical property
x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n)

the formalisation of the step case is given by
1 is : ∀ m → A m → A (succ m)
2 is m ih n = succ m + n ≡⟨ PA₄ m n ⟩
3 succ (m + n) ≡⟨ succCong (ih n) ⟩
4 succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩
5 n + succ m ∎

Note our use of the compatibility of the propositional equality with the
successor function in line 3 to justify the omitted detail required in the
textbook proof when using the inductive hypothesis ih.

Finally, we integrate the definition of the propositional function A, the
proof of the base case A0 and the proof of the inductive step is in the proof
of +-comm using the axiom of induction ℕ-ind and Agda’s where clauses.

+-comm : ∀ m n → m + n ≡ n + m
+-comm m n = ℕ-ind A A0 is m

where
A : M → Set
A i = i + n ≡ n + i

A0 : A zero
A0 = zero + n ≡⟨ +-leftIdentity n ⟩

n ≡⟨ sym (+-rightIdentity n) ⟩
n + zero ∎

is : ∀ i → A i → A (succ i)
is i ih = succ i + n ≡⟨ PA₄ i n ⟩

succ (i + n) ≡⟨ succCong ih ⟩
succ (n + i) ≡⟨ sym (x+Sy≡S[x+y] n i) ⟩
n + succ i ∎
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3.3.3 Inductive Representation of Peano Arithmetic: Using
Inductive Notions for Representing the Non-Logical
Axioms

We formalise PA with the inductive approach using inductive notions for
representing its non-logical axioms. We use an inductive data type for rep-
resenting the PA domain, and function defined by structural recursion for
representing the arithmetical operations and the axiom schema of induction.
By comparing the two representations of PA, we hope the benefits of using
inductive notions in the formalisation of first-order theories will become even
more clear.

We start by defining the domain of PA with the inductive data type

data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ.

As explained in § 2.1, the above declaration introduces three constants to
the theory

ℕ : Set
zero : ℕ
succ : ℕ → ℕ

that is, a new small type called ℕ, with a nullary constructor zero and a
unary, recursive constructor succ.

Before we move to the inductive implementation of PA, we point out
some aspects related to the inductive representation of FOL. Some of the
constants in the representation of FOL in Fig. 3.1 were defined on the pos-
tulated domain of quantification D. Given that we are now working with the
inductive domain ℕ, it is necessary to define those constants over ℕ instead
of over D. The FOL constants on both domains are formally the same, be-
ing concrete instances of more general versions parametrised by small types.
We shall therefore avoid cumbersome notations using the names in Fig. 3.1
for both sets of constants. For example, the propositional equality on the
domain ℕ is defined by

data _≡_ (x : ℕ) : ℕ → Set where
refl : x ≡ x.

Now, we continue with the inductive implementation of PA. We define
two structural recursive operations + and ∗ over the elements in our do-
main ℕ.
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infixl 10 _*_
infixl 9 _+_

_+_ : ℕ → ℕ → ℕ
zero + n = n
succ m + n = succ (m + n)

_*_ : ℕ → ℕ → ℕ
zero * n = zero
succ m * n = n + m * n.

By providing theses definitions, Agda will be able to use normalisation when
performing equational reasoning for _+_ and _*_, which results in shorter
proofs.

In the following example, we compare the formalisation of the proof of
the commutativity of addition using and not using Agda’s proof engine.

Example 3.18. Using Agda’s proof engine, the implementation of the proof
of the commutativity of addition can be conducted by pattern matching on
the first argument because it belongs to an inductive domain.

1 +-comm : ∀ m n → m + n ≡ n + m
2 +-comm zero n = sym (+-rightIdentity n)
3 +-comm (succ m) n = succ (m + n) ≡⟨ succCong (+-comm m n) ⟩
4 succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩
5 n + succ m ∎

The first difference with respect to the proof in Example 3.17 is that we did
not use the constant ℕ-ind which implements the axiom schema of induction.
Instead, we use pattern matching and structural recursion for writing the
proof. Note that this is more of a notational that fundamental difference: the
proof by pattern matching can be translated into a proof by ℕ-ind. Line 2
corresponds to the proof of the base case. Lines 3-5 correspond to the proof
of the inductive step. Both proofs have one fewer equational reasoning steps
than the proofs in Example 3.17, due to the normalisation of the equations
of the addition function _+_ performed by Agda’s type checker. In line 3,
we replaced the use of the inductive hypothesis by a recursive call to the
function +-comm on structurally smaller arguments.

It is noteworthy that the inductive representation of PA using inductive
notions for representing its non-logical axioms entails the definitions used in
the inductive representation of PA using postulates for representing its non-
logical axioms presented in § 3.3.2. Using the inductive domain ℕ, the pro-
positional equality on this domain, and the structural recursive functions _+_
and _*_, it is possible to prove all the PA axioms introduced in § 3.3.2.

The axiom PA1 is proved using the absurd pattern.
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PA₁ : ∀ {n} → zero ≢ succ n
PA₁ ().

The proof of axiom PA2 is reduced to a proof of the trivial identity n ≡ n
after pattern match on a proof of the hypothesis.

PA₂ : ∀ {m n} → succ m ≡ succ n → m ≡ n
PA₂ refl = refl.

The axioms PA3 and PA4 for addition and the axioms PA5 and PA6 for
multiplication are consequences of Agda’s normalisation of the definitions
of _+_ and _*_, respectively.

PA₃ : ∀ n → zero + n ≡ n
PA₃ n = refl

PA₄ : ∀ m n → succ m + n ≡ succ (m + n)
PA₄ m n = refl

PA₅ : ∀ n → zero * n ≡ zero
PA₅ n = refl

PA₆ : ∀ m n → succ m * n ≡ n + m * n
PA₆ m n = refl.

Finally, rather than postulating the axiom of induction, we implement it
using the inductive domain of PA and a higher-order, structural recursive
function defined by pattern matching on this domain.

ℕ-ind : (A : ℕ → Set) →
A zero →
(∀ n → A n → A (succ n)) →
∀ n → A n

ℕ-ind A A0 h zero = A0
ℕ-ind A A0 h (succ n) = h n (ℕ-ind A A0 h n).

Note that the axiom of induction corresponds to the induction principle
associated with the inductive domain of ℕ.

Remark 3.19. The induction principle associated with a (recursive) data
type corresponds to the elimination rule of such data type. In the sequel, we
shall used either concepts when referring to induction principles.
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3.4 On the Adequacy of the Inductive
Representation of First-Order Logic and
Theories

When using Agda as a logical framework, the proof of a formula in a logic re-
duces to a type inhabitation problem in the Agda representation of that logic.
In this context, a question arises as to whether the logic as originally presen-
ted is indeed the logic that has been represented in the logical framework.
An adequacy theorem stating that the consequence relation in the logic has
been well represented in the logical framework is needed (see, for example,
Gardner [1993, 1995] and Harper and Licata [2007]). Since Agda is a research
system with some features whose meta-theory have not been formalised (see,
for example, Danielsson [2010], Forsberg and Setzer [2010] and Abel, Pientka
et al. [2013]), rigorous proofs that our inductive representations of first-order
logic and theories are adequate, besides being very difficult, are beyond the
scope of this thesis. In the next sections, we shall discuss the possibilities
and/or difficulties of showing an adequacy theorem for our inductive rep-
resentation of first-order logic and theories. In Sections § 3.4.1 and § 3.4.2,
the discussion is based on the inductive representation of FOL and the use
of pattern matching, respectively. In Section § 3.4.3, the discussion is based
on the inductive representation of first-order theories.

3.4.1 Adequacy of the Inductive Representation of
First-Order Logic

In Fig. 3.1, we show the representation of FOL using Agda’s inductive no-
tions. Following Gardner [1993, 1995], we could show an adequacy theorem
for FOL which states that: a formula A can be proved in FOL if and only if
there is a proof term a : A* in the Agda representation of FOL, where A* is
the Agda representation of A using (3.3). The proof term a can only use the
constants introduced in Fig. 3.1 and the constants underlying Agda as a lo-
gical framework, that is, the universe of small types Set, the non-dependent
function type A → B, the dependent function type (x : A) → B, function
application f a, 𝜆-abstraction λ x → e, the judgments A : Set, a : A and
l = r : A, and the inductively defined types and families.

Convention 3.20. We shall call ‘basic inductive constants of FOL’ to the
set of constants above described.

Remark 3.21. In the use of Agda as a logical framework, there are addi-
tional constants such as the infinite hierarchy of universes Set𝑖∈𝜔, which are
not used in our inductive representation of first-order logic and theories.

Example 3.22. According to Fig. 3.1, the only constants related to dis-
junction that may be used are _∨_, inj₁, inj₂ and case; similarly for the
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other logical constants.

Remark 3.23. Note from Fig. 3.1 that the conditional and the universal
quantifier on D are not represented by inductive constants. We could in-
ductively represent both constants and their corresponding applications as
follows:

data _⊃_ (A B : Set) : Set where
fun : (A → B) → A ⊃ B

app : {A B : Set} → A ⊃ B → A → B
app (fun f) a = f a

data ForAll (A : D → Set) : Set where
dfun : ((t : D) → A t) → ForAll A

dapp : {A : D → Set}(t : D) → ForAll A → A t
dapp t (dfun f) = f t.

This is however not necessary because we are using a shallow embedding for
representing FOL.

Remark 3.24. Since the type formers (the formation rules) and the con-
stants (introduction and elimination rules) introduced in the inductive and
LF- approaches have the same types, we basically reduce the adequacy prob-
lem for the inductive representation of FOL, which only uses the basic in-
ductive constants of FOL, to the adequacy of its LF-representation.

3.4.2 Adequacy of the Use of Pattern Matching with the
Inductive Representation of First-Order Logic

Since in Fig. 3.1, we allow the introduction of constants defined by pattern
matching on types introduced with Agda’s data constructor an adequacy the-
orem should be based on the fact that the new constants are non-recursive—
they represent FOL-proofs—and on the fact that the pattern matching used
can be eliminated and replaced by terms only using the basic inductive con-
stants of FOL (see convention 3.20).

In what follows, we show a few examples where we show how to eliminate
pattern matching in non-recursive definitions.

Example 3.25. The data construct for disjunction gives access to pattern
matching on _∨_. If the user introduces a new non-recursive constant with
a definition of the form

g : (A → C) → (B → C) → A ∨ B → C
g f₁ f₂ (inj₁ a) = f₁ a
g f₁ f₂ (inj₂ b) = f₂ b
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for some A B C : Set, f₁ : A → C and f₂ : B → C, then we can replace the
above pattern matching on a proof of A ∨ B with

g f₁ f₂ = case f₁ f₂.

In the simplest situation, the constants A, B and C are closed formulae
(small types) and f₁ and f₂ are closed proof terms, but Agda allows us to
introduce schematic proofs as well (see Example 3.27).

Example 3.26. Using the inductive definition of the FOL-equality, we can
also replace a non-recursive proof by pattern matching like

g : ∀ {a b} → a ≡ b → C a b
g refl = d

where C : D → D → Set and d : ∀ {a} → C a a, by

g {a} h = subst (λ x → C a x) h d.

Example 3.27. We can also remove the pattern matching used in schematic
proofs. In Example 3.12, we introduced the following non-recursive schem-
atic proofs

∨-comm : {A B : Set} → A ∨ B → B ∨ A
∃∀ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y →

∃[ x ] A x y

by pattern matching on a proof of A ∨ B and on a proof of
∃[ x ](∀ y → A x y), respectively. These patterns matching can be elim-
inated and replaced by terms which only use the basic inductive constants
of FOL (see convention 3.20).

Agda allows for more advanced forms of pattern matching than discussed
until now. Although there is no formal description of Agda’s pattern match-
ing facility, an adequacy theorem should be based on showing that those
advanced forms of pattern matching used for introducing new non-recursive
constants can also be replaced by the basic inductive constants of FOL.

In the following example, we show how to eliminate a non-trivial pattern
matching in a non-recursive definitions.

Example 3.28. Let A B C E : Set be small types, and

f₁ : A → E
f₂ : B → E
f₃ : C → E

be constants. If we want to define the proof

g : (A ∨ B) ∨ C → E

45



3. Using Agda with Data and Pattern Matching as a Logical Framework

by pattern matching, we can directly build nested patterns

g (inj₁ (inj₁ a)) = f₁ a
g (inj₁ (inj₂ b)) = f₂ b
g (inj₂ c) = f₃ c.

The previous patterns matching can be replaced by repeatedly using the
case elimination rule

g = case (case f₁ f₂) f₃.

Remark 3.29. Norell’s thesis states very clearly that Agda’s pattern match-
ing is a non-conservative extension of Martin-Löf’s type theory: by using
pattern matching on a proof of the identity type, we can prove the Streicher-
Altenkirch K axiom which has been shown to not be derivable from the elim-
ination rule subst for the propositional equality (see Norell [2007b] and refer-
ences therein). In our inductive approach, the FOL’s theorems are translated
into types using (3.3), since these types do not contain proof terms of the
identity type, our possible adequacy theorem is not affected by Agda’s pos-
sibility of proving the Streicher-Altenkirch K axiom.

3.4.3 Adequacy of the Inductive Representation of
First-Order Theories

When we use inductively defined types and/or families in the representation
of a first-order theory T, the set of the basic inductive constants of T is
the set of the basic inductive constants of FOL plus the new inductively
defined constants, that is, the new formation, introduction and elimination
rules added. In this case, an adequacy theorem should be based on showing
that the pattern matching used for defining new constants can be replaced
by terms only using the basic inductive constants of T. Whether a pattern
matching can or cannot be eliminated depend on Agda’s type checker.

In the following example, we show how to use the induction principle
associated with an inductive data type to replace recursive definitions made
by pattern matching.

Example 3.30. In our inductive representation of PA (see § 3.3.3), we
introduced the following constants:

ℕ : Set
zero : ℕ
succ : ℕ → ℕ
ℕ-ind : (A : ℕ → Set) →

A zero →
(∀ n → A n → A (succ n)) →
∀ n → A n.
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As highlighted in Example 3.18, we can replace a proof by pattern match-
ing on ℕ by a proof using the axiom schema of induction implemented by
the constant ℕ-ind. The key point in an adequacy theorem for our inductive
representation of PA is that recursive functions—like _*_ or _*_—defined by
pattern matching can be directly reduced to definitions by ℕ-ind.

Let h be a primitive recursive function (see, for example, Kleene [1952])
defined by pattern matching on ℕ

h : {A : Set} → ℕ → A
h zero = d
h (succ n) = e n (h n)

where d : A and e : ℕ → A → A. The h function can be defined without using
pattern matching by using the combinator

ℕ-rec : {A : Set} → A → (ℕ → A → A) → ℕ → A
ℕ-rec {A} = ℕ-ind (λ _ → A).

For example, the definitions of the functions _+_ and _*_ are given by

_+_ : ℕ → ℕ → ℕ
m + n = ℕ-rec n (λ _ x → succ x) m

_*_ : ℕ → ℕ → ℕ
m * n = ℕ-rec zero (λ _ x → n + x) m.

Using the ℕ-rec combinator we can define all the first-order primit-
ive functions—using Harper’s [2013] terminology—and using ℕ-ind we can
also define higher-order primitive functions like the Ackermann function
(see § 2.1). In fact, using ℕ-ind we can define all the functions from ℕ to ℕ
provably total in PA (see, for example, Girard [1990]).

Remark 3.31. In the formalisation of the theories described in Chapters 4
and 5, we use inductively defined families and Agda’s full support for proofs
by pattern matching. In addition, these formalisations are based on our
inductive formalisation of FOL described in Fig. 3.1. Consequently, the dis-
cussions in § 3.4 also apply to those theories.
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Chapter 4

Logical Theory of
Constructions

Having now explained how we shall use Agda (with postulates, data declara-
tions and pattern matching) for implementing proofs in (classical) first-order
logic and theories, we shall move to the main topic of this thesis, namely
how to prove properties about functional programs in first-order logic. Agda
will provide the environment for interactive proofs. In Chapter 6, we shall
show how we interact with automatic first-order theorem provers.

Before moving to first-order logic, we shall discuss the formalisation of a
programming logic for reasoning about a core lazy functional programming
language, Plotkin’s PCF language. In this programming logic we can reason
about 𝜆-terms and since they are not permitted in first-order logic, we shall
need to replace them by combinators. We shall discuss this replacement in
Chapter 5.

We use the name ‘logical theory of constructions’ (henceforth, LTC) as
a generic name for a family of related logical systems which have been used
by Aczel [1977b, 1980, 1989] and Smith [1978, 1984] to interpret Martin-
Löf’s type theory in type-free logical systems. Given the existence of an
interpretation, we can conclude that LTC is at least as strong as Martin-
Löf’s type theory. Some of these logical systems are based on combinators
and stay strictly within the realm of FOL, whereas others are based on
the 𝜆-calculus and do not. Since these systems play a role for constructive
foundations, they are usually intuitionistic but we can also consider classical
versions.

Dybjer [1985, 1990] showed that LTC is appropriate for verification of
lazy and general recursive functional programs. Since general recursive func-
tions cannot be directly formalised in Martin-Löf’s type theory, LTC is
strictly more general than it. In particular, we can write arbitrary general
recursive functions defined by fixed-points. Dybjer’s programming logic is
closely related to Aczel’s first-order theory of combinatory arithmetic [Aczel
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1977b] but is based on the 𝜆-calculus, and it is hence not a first-order theory.

Dybjer’s [1985] LTC logic will not suffice for proving all interesting prop-
erties of functional programs: to reason for example about streams (poten-
tially infinite lists) we need principles, such as co-induction [Gordon 1995],
which are not available in LTC. However, as Dybjer [1985] emphasised, LTC
will go a long way if we restrict ourselves to behaviours of programs on total
and finite elements of data structures.

In § 4.1, we adapt Dybjer’s programming logic to a version of the lazy
PCF language. In § 4.2, we prove the consistency of our programming logic
by building a (logical) model which uses denotational semantics and the
theory of inductive definitions. In § 4.3, we represent our programming logic
in Agda using the inductive approach. In § 4.4 and § 4.5, we show how to
use our programming logic to prove properties by structural recursion and
to verify general recursive programs, respectively.

4.1 Logical Theory for PCF

Although our long term goal is to verify “real” lazy functional programs
(written in Haskell, for example), we define our programming logic for a
simple setting. In this chapter, we adapt Dybjer’s LTC logic to the PCF
language, where we only have Booleans and natural numbers as basic data.
We depart from Plotkin’s presentation by considering PCF as a type-free
language. We also make the fixed-point operator a binding construct follow-
ing [Winskel 1994].

Our LTC-style programming logic for PCF is a logical system with equal-
ity. The programming logic described in Chapter 5 will be a first-order the-
ory whose underlying logic will be classical logic. Since the consistency of
this programming logic will be based on a translation of it into the logic
theory for PCF (henceforth, LTPCF), it is required that the underlying logic
of LTPCF be classical logic too. One might object that we should not work
with non-intuitionist axioms such as the principle of the exclude middle. We
reject this objection on the grounds that in this thesis we are not attempting
to contribute to constructive foundations but to outline a genuinely prac-
tical approach to verification of lazy functional programs. To this end, we
do not mind using classical logic (for reasons given above) and axioms which
are proved consistent using classical techniques.
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LTPCF-terms are generated by the following grammar:

Terms ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑡 · 𝑡 application
∣ 𝜆𝑥.𝑡 𝜆-abstraction
∣ fix 𝑥.𝑡 fixed-point operator
∣ true ∣ false ∣ if partial Boolean constants
∣ 0 ∣ succ ∣ pred ∣ iszero partial natural number constants

LTPCF has the standard FOL-predicate symbols 𝑃(𝑡, … , 𝑡). Moreover,
LTPCF has two unary inductive predicate symbols ℬ𝑜𝑜𝑙 and 𝒩, where ℬ𝑜𝑜𝑙(𝑡)
means that 𝑡 is a total and finite Boolean value (true or false), and 𝒩(𝑡)
means that 𝑡 is a total and finite natural number.

The LTPCF-formulae are generated by the following grammar:

Formulae ∋ 𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood
∣ 𝐴 ⊃ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 binary logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate
∣ ℬ𝑜𝑜𝑙(𝑡) total Booleans predicate
∣ 𝒩(𝑡) total natural numbers predicate

Conventions 4.1. The binary application function symbol “·” is left-asso-
ciative. In addition, we follow the same abbreviations and conventions as
with the FOL-formulae (see conventions 3.2).

Terms 𝑡 and formulae 𝐴 are formed in the usual way. The non-logical
axioms and axiom schemata of LTPCF can be classified into three groups:
(i) conversion rules for the combinators, (ii) discrimination rules expressing
that terms beginning with different constructors are not convertible and
(iii) introduction and elimination rules for ℬ𝑜𝑜𝑙 and 𝒩.

• Conversion rules for the LTPCF-terms:

∀𝑡 𝑡′. if · true · 𝑡 · 𝑡′ = 𝑡,
∀𝑡 𝑡′. if · false · 𝑡 · 𝑡′ = 𝑡′,

pred · 0 = 0,
∀𝑡. pred · (succ · 𝑡) = 𝑡,

iszero · 0 = true,
∀𝑡. iszero · (succ · 𝑡) = false,

(4.1a)
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∀𝑡 𝑡′. (𝜆𝑥.𝑡) · 𝑡′ = 𝑡[𝑥 ∶= 𝑡′],
∀𝑡. fix 𝑥.𝑡 = 𝑡[𝑥 ∶= fix 𝑥.𝑡], (4.1b)

where 𝑡[𝑥 ∶= 𝑡′] is the capture-free substitution of 𝑥 for 𝑡′ in 𝑡.
• Discrimination rules for constructors:

true ≠ false,
∀𝑡. 0 ≠ succ · 𝑡. (4.2)

• Introduction and elimination (expressing proof by case analysis on
total and finite Boolean values) rules for the inductive predicate ℬ𝑜𝑜𝑙:

,
ℬ𝑜𝑜𝑙(true)

,
ℬ𝑜𝑜𝑙(false) (4.3a)

ℬ𝑜𝑜𝑙(𝑡) 𝐴(true) 𝐴(false) .
𝐴(𝑡) (4.3b)

• Introduction and elimination (expressing proof by mathematical in-
duction) rules for the inductive predicate 𝒩 (see, for example, Martin-
Löf [1971]):

,
𝒩(0)

𝒩(𝑡) ,
𝒩(succ · 𝑡) (4.4a)

𝒩(𝑡) 𝐴(0)

[𝐴(𝑡′)]
⋮

𝐴(succ · 𝑡′) .
𝐴(𝑡)

(4.4b)

Remark 4.2. Note that (some of) the above conversion and discrimination
rules only hold if the arguments of the functions are evaluated lazily. For
example, the equation

∀𝑡. pred · (succ · 𝑡) = 𝑡
does not hold if it is evaluated strictly and the term 𝑡 loops.

In LTPCF, we use the inductive predicates ℬ𝑜𝑜𝑙 and 𝒩 to assert that
a certain (possibly non-terminating) program terminates with a total and
finite Boolean value or with a total and finite natural number, respectively.
This result is based on a translation of these inductive predicates to types
in Martin-Löf’s type theory (see Dybjer [1985] for a detailed discussion of
it). For example, we express that a function 𝑓 terminates and it maps a
total and finite natural number to a total and finite natural number by the
formula

∀𝑡. 𝒩(𝑡) ⊃ 𝒩(𝑓 · 𝑡). (4.5)
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4.2 Consistency
The consistency of our programming logic LTPCF is based on standard results
from domain theory and the theory of inductive definitions. The consistency
of LTPCF is a consequence of the existence of a domain model for its term
language—a type-free version of PCF—and the interpretation of its induct-
ively defined predicates as subsets of this domain model.

The definitions related to domain theory vary considerably in the liter-
ature. Appendix A contains a summary of notions used on this thesis. In
particular, we shall use the term ‘domain’ to refer to an 𝜔-complete partial
order (Definition A.4).

We know from domain theory that a domain model for LTPCF-terms, the
term language of LTPCF—where self-application is allowed and where the
terms will have values in the Booleans or the lazy natural numbers—is a
solution to the recursive domain equation (see, for example, Plotkin [1992])

D ≅ B⊥ ⊕ LN ⊕ (D → D)⊥, (4.6)

where ⊕ is the coalesced sum on domains (Definition A.11), B⊥ is the lifted
Boolean domain (Example A.6), LN is the lazy natural numbers domain
(Example A.7) and (D → D)⊥ is the lifted function space domain (Defini-
tion A.5), which is required because the operator ⊕ is defined on domains.
Notation 4.3. Let D be a domain and let 𝜌 be a valuation on D, that
is, a function from the set of variables in LTPCF-terms to D. The notation
𝜌(𝑥 ↦ d) indicates the valuation which maps 𝑥 to d and otherwise acts
like 𝜌. The notation 𝝀x.e denotes 𝜆-abstraction on D.

Let D be a solution to (4.6) and [D → D] the function space of continu-
ous functions on D (Definition A.9). The domain D comes equipped with
the continuous functions [Barendregt 2004]

F ∶ D → [D → D],
G ∶ [D → D] → D.

Let 𝜌 be a valuation on D. Based on Pitts [1994a], we define the interpret-
ation ⟦ ⟧𝜌 ∶ LTPCF-terms → D by induction on LTPCF-terms by

⟦𝑥⟧𝜌 = 𝜌(𝑥), ⟦𝑡 · 𝑡′⟧𝜌 = {f(⟦𝑡′⟧𝜌) if ⟦𝑡⟧𝜌 = G(f),
⊥ otherwise,

⟦𝜆𝑥.𝑡⟧𝜌 = G(𝝀d.⟦𝑡⟧𝜌(𝑥 ↦ d)), ⟦fix 𝑥.𝑡⟧𝜌 = Fix(𝝀d.⟦𝑡⟧𝜌(𝑥 ↦ d)),
⟦true⟧𝜌 = true, ⟦false⟧𝜌 = false,

⟦if⟧𝜌 = G(if), ⟦0⟧𝜌 = 0,
⟦succ⟧𝜌 = G(succ), ⟦pred⟧𝜌 = G(pred),

⟦iszero⟧𝜌 = G(iszero),
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where we omit the use of the injection functions 𝑖𝑛𝑖 (Definition A.11) in
order to simplify the presentation, Fix is the fixed-point operator given by
Theorem A.10, and the continuous functions if, succ, pred and iszero
from D to D are defined by

if(𝑑) =
⎧{
⎨{⎩

𝝀xy.x if 𝑑 = true,
𝝀xy.y if 𝑑 = false,
⊥ otherwise,

succ(𝑑) =
⎧{
⎨{⎩

n + 1 if 𝑑 = n ∈ LN,
n + 1 if 𝑑 = n ∈ LN,
⊥ otherwise,

pred(𝑑) =
⎧{
⎨{⎩

0 if 𝑑 = 0,
𝑑′ if 𝑑 = succ(𝑑′),
⊥ otherwise,

iszero(𝑑) =
⎧{
⎨{⎩

true if 𝑑 = 0,
false if 𝑑 = succ(𝑑′),
⊥ otherwise.

If the LTPCF-equality is interpreted as the equality in D, it is possible to
verify that the conversion rules (4.1) and the discrimination rules (4.2) are
satisfied in D.

Now, for the interpretation of the inductively defined predicates ℬ𝑜𝑜𝑙 and
𝒩, let D be a domain model of LTPCF. We shall use Aczel’s set-theoretic
notion of rule set (sets of rules) to interpret these predicates [Aczel 1977a].

A rule on a set 𝑈 is a pair 〈𝑋, 𝑥〉, usually written 𝑋
𝑥 , where 𝑋 is a set

called the set of premises, and 𝑥 is the conclusion, such that 𝑋 ∪ {𝑥} ⊆ 𝑈 .
A rule 〈𝑋, 𝑥〉 is finitary if the set 𝑋 is finite.

Convention 4.4. In this thesis, it is only required to use finitary rules—
infinitary rules are used for example by Dybjer [1991] for interpreting arbit-
rary inductive types and families of Martin-Löf’s type theory—in the sequel,
we shall use the word ‘rule’ to refer to ‘finitary rule’.

Example 4.5. From the introduction rules (4.3a) and (4.4a) of the predic-
ates ℬ𝑜𝑜𝑙 and 𝒩 respectively, we define the following rule sets on D:

Φℬ𝑜𝑜𝑙 = { ∅
true} ∪ { ∅

false} , Φ𝒩 = { ∅
0} ∪ { {𝑛}

succ(𝑛) ∣ 𝑛 ∈ D} .

Let Φ be a rule set on 𝑈 . A set 𝐴 is Φ-closed if 〈𝑋, 𝑥〉 ∈ Φ and 𝑋 ⊆ 𝐴
implies 𝑥 ∈ 𝐴. The inductively defined set by Φ is the least Φ-closed set
defined by

𝐼(Φ) = ⋂{𝐴 ⊆ 𝑈 ∣ 𝐴 is Φ-closed}. (4.7)

Example 4.6. The inductive predicates ℬ𝑜𝑜𝑙 and 𝒩 are interpreted by the
following subsets of D:

Bool = 𝐼(Φℬ𝑜𝑜𝑙) N = 𝐼(Φ𝒩)
= {true, false}, = {0, succ(0), succ(succ(0)), …}

= {0, 1, 2, …}.
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Remark 4.7. The inductively defined sets by a rule set can also be defined
as least fixed-points of monotone operators. Let Pow(𝐴) be the power set
of a set 𝐴 and let Φ be a rule set on a set 𝑈 . The rule set Φ induces an
operator Φ̂ given by

Φ̂ ∶ Pow(𝑈) → Pow(𝑈)
𝐴 ↦ {𝑥 ∈ 𝑈 ∣ 〈𝑋, 𝑥〉 ∈ Φ for some 𝑋 ⊆ 𝐴}.

Let Φ̂ ∶ Pow(𝑈) → Pow(𝑈) be the operator induced by a (finite) rule
set Φ on 𝑈 . The operator Φ̂ is monotone on the partial order (Pow(𝑈), ⊆).
The inductively defined set by Φ is the least fixed-point of Φ̂ defined by (see,
for example, Winskel [1994] and Pitts [1994b])

𝐼(Φ) = ⋃
𝑛∈𝜔

Φ̂𝑛(∅),

where for any 𝐴 ⊆ Pow(𝑈)

Φ̂0(𝐴) = 𝐴,
Φ̂𝑛+1(𝐴) = Φ̂(Φ̂𝑛(𝐴)).

4.3 Inductive Representation of the Logical
Theory for PCF

We benefit from Agda’s inductively defined types, including inductive fam-
ilies, and function definitions using pattern matching on such types, in our
representation of LTPCF. In the inductive approach, the LTPCF logical con-
stants are represented as type formers defined by their introduction rules,
and the predicates for total and finite Boolean values, and total and finite
natural numbers are represented as inductively defined predicates over the
domain of LTPCF. We can then define the elimination rules for the logical
constants and the totality predicates by pattern matching.

For the same reason we mentioned in the inductive representation of
FOL, that is, to make full use of Agda’s support for proof by pattern match-
ing, we shall not restrict ourselves to using the elimination rules above. In
the inductive formalisation of LTPCF, we shall also allow proofs by pattern
matching in general, as long as they are accepted by Agda’s coverage and
termination checker. This means that we actually work in an extension of
LTPCF since, by working in this way, new, more general induction principles
become available. This extension can be expected to be conservative—but
we do not know this for certain—although it would be quite hard to prove
that rigorously, and such proof is outside the scope of this thesis (see § 3.4).

We could also inductively define the domain of LTPCF in Agda, but if we
were to do so, we would be unable to use Agda’s identity type for equality
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of domain elements; equality of domain elements would be represented by a
binary non-trivial equivalence relation _≐_ and as a consequence we would
need to work with a setoid (D, ≐).

Forgetting for the moment the higher-order terms lam and fix, we could
inductively define the domain D by

data D : Set where
_·_ : D → D → D
true false if zero succ pred iszero : D

and the setoid equality by

data _≐_ : D → D → Set where
≐-refl : ∀ {x} → x ≐ x
≐-sym : ∀ {x y} → x ≐ y → y ≐ x
≐-trans : ∀ {x y z} → x ≐ y → y ≐ z → x ≐ z
≐-cong : ∀ {x x' y y'} → x ≐ y → x' ≐ y' → x · x' ≐ y · y'
if-true : ∀ t t' → if · true · t · t' ≐ t
if-false : ∀ t t' → if · false · t · t' ≐ t'
pred-0 : pred · zero ≐ zero
pred-S : ∀ n → pred · (succ · n) ≐ n
iszero-0 : iszero · zero ≐ true
iszero-S : ∀ n → iszero · (succ · n) ≐ false.

Next, given the substitutivity property

≐-subst : (A : D → Set) → ∀ {x y} → x ≐ y → A x → A y

we could prove

≐→≡ : ∀ {x y} → x ≐ y → x ≡ y
≐→≡ {x} h = ≐-subst (λ z → x ≡ z) h refl

however, since the setoid equality is not substitutive (see, for example,
Altenkirch and McBride [2006]), we cannot prove ≐-subst, and therefore _≐_
is a non-trivial equivalence relation and not all properties preserve it.

Since we shall never prove properties by induction on D, it is preferable
to postulate the existence of both D and the conversion rules for terms on D
using Agda’s identity type.

To sum up, some of the axioms and axiom schemata of LTPCF will still
be postulated, where others will be consequences of inductive definitions.
We now present how this is done.

Terms. We employ the usual method for representing the type-free 𝜆-cal-
culus. First we postulate a domain of terms:

postulate D : Set.
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Next, we postulate the term constructors for LTPCF using higher-order ab-
stract syntax—using the binders of the meta-language to represent the bind-
ing structure of the object language—to represent the variable binding op-
erations 𝜆 and fix as Agda higher-order functions. Writing zero for 0 and lam
for 𝜆, the postulates are:

postulate
_·_ : D → D → D
lam fix : (D → D) → D (4.8)
true false if : D
zero succ pred iszero : D.

Classical predicate logic with equality. Although LTPCF is not a first-
order theory because it has 𝜆-abstraction and a fixed-point operator, it does
not have the features associated with higher-order logics—predicates hav-
ing other predicates or functions as arguments, or quantification over func-
tions or predicates [Mendelson 1997]. Since the fixed-point operator can be
removed—it is definable in the type-free 𝜆-calculus—and we can perform
𝜆-lifting to remove the 𝜆-abstractions [Peyton Jones 1987], we might say
that LTPCF is “morally” first-order but not “officially” first-order. Hence, we
use the logical constants and axioms implemented in Fig. 3.1 for representing
the classical predicate logic of LTPCF.
Conversion rules. The conversion rules (4.1) are implemented by the fol-
lowing postulates:

postulate
if-true : ∀ t {t'} → if · true · t · t' ≡ t
if-false : ∀ {t} t' → if · false · t · t' ≡ t'
pred-0 : pred · zero ≡ zero
pred-S : ∀ n → pred · (succ · n) ≡ n (4.9)
iszero-0 : iszero · zero ≡ true
iszero-S : ∀ n → iszero · (succ · n) ≡ false
beta : ∀ f a → lam f · a ≡ f a
fix-eq : ∀ f → fix f ≡ f (fix f).

Discrimination rules. The discrimination rules (4.2) are implemented as
follows:

postulate
t≢f : true ≢ false
0≢S : ∀ {n} → zero ≢ succ · n.

Inference rules for the total and finite Booleans predicate. The in-
ductive predicate ℬ𝑜𝑜𝑙 for total and finite Booleans, given by the rules (4.3),
is represented as an inductive family:

data Bool : D → Set where
btrue : Bool true
bfalse : Bool false
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The above declaration defines the unary predicate symbol Bool and the
introduction rules btrue and bfalse.

We can now define the elimination rule for ℬ𝑜𝑜𝑙 by pattern matching.

Bool-ind : (A : D → Set) → A true → A false → ∀ {b} → Bool b → A b
Bool-ind A At Af btrue = At
Bool-ind A At Af bfalse = Af.

Inference rules for the total and finite natural numbers predicate.
The inductive predicate 𝒩 for total and finite natural numbers, given by
rules (4.4), is also represented as an inductive family:

data N : D → Set where
nzero : N zero (4.10)
nsucc : ∀ {n} → N n → N (succ · n).

The above declaration introduces the unary predicate symbol N and the
introduction rules nzero and nsucc.

The elimination rule for 𝒩 is defined by pattern matching.

N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ · n)) → (4.11)
∀ {n} → N n → A n

N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn).

Remark 4.8. When proving a property, we shall not use the elimination
rules Bool-ind or N-ind because we shall use Agda’s pattern matching on the
total and finite Booleans, and on the total and finite natural numbers.

Remark 4.9. Sometimes the associated induction principle N-ind—given
by (4.11)—for the inductive family N—given by (4.10)—has a slightly differ-
ent shape. For example, the induction principle generated by Coq [The Coq
Development Team 2014] has the hypothesis [Bertot and Castéran 2004]

∀ {n} → N n → A n → A (succ · n)

instead of the hypothesis

∀ {n} → A n → A (succ · n).

This difference is not important because the two versions of the induction
principle N-ind are equivalents (see Appendix B).

Convention 4.10. Instead of using the constants if, succ, pred and iszero
of type D, we define more readable and writable function symbols of the
appropriate types.
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if_then_else_ : D → D → D → D
if b then t else t' = if · b · t · t'

succ₁ : D → D
succ₁ n = succ · n

pred₁ : D → D
pred₁ n = pred · n

iszero₁ : D → D
iszero₁ n = iszero · n.

Remark 4.11. By using the above convention, instead of implementing
the inductive predicate 𝒩 by the inductive family (4.10) and the induction
principle (4.11), we implement it by the following equivalent implementation,
where we use the unary function symbol succ₁:

data N : D → Set where
nzero : N zero (4.12)
nsucc : ∀ {n} → N n → N (succ₁ n).

N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ₁ n)) → (4.13)
∀ {n} → N n → A n

N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn).

4.4 Proving Properties by Structural Recursion
We show the formalisation of some LTPCF-proofs using the inductive rep-
resentation described in § 4.3. In Chapter 3, the methodology for showing
the proofs was as follows: first, we showed a proof using textbook-style, and
then, we showed the corresponding formalised proof using our Agda repres-
entation. In the sequel, we shall omit the textbook-style proof and directly
present the Agda version of the proof.

In our first examples, we show the termination proofs of some arithmet-
ical properties on total and finite natural numbers.

Example 4.12. We start by introducing an LTPCF-combinator for defining
primitive recursive functions on the (partial) natural numbers using the
fixed-point operator fix:

fix 𝑟.𝜆𝑛.𝜆𝑎.𝜆𝑓.if · (iszero · 𝑛) · 𝑎 · (𝑓 · (pred · 𝑛) · (𝑟 · (pred · 𝑛) · 𝑎 · 𝑓)).
Using the representation of LTPCF-terms as elements of the domain D presen-
ted in § 4.3 and convention 4.10, we implement the above combinator by
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rech : D → D
rech r = lam (λ n → lam (λ a → lam (λ f →

if (iszero₁ n)
then a
else f · (pred₁ n) · (r · (pred₁ n) · a · f))))

rec : D → D → D → D
rec n a f = fix rech · n · a · f.

The combinator rec satisfies the conversion rules

rec-0 : ∀ a {f} → rec zero a f ≡ a
rec-S : ∀ n a f → rec (succ₁ n) a f ≡ f · n · (rec n a f)

which can be proved by equational reasoning using the combinators intro-
duced in § 2.2, since the LTPCF-equality, implemented by the FOL-equality,
is a preorder.

Addition of the (partial) natural numbers is recursively defined on the
first argument by

_+_ : D → D → D (4.14)
m + n = rec m n (lam (λ _ → lam succ₁))

where its conversion rules

+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n)

can also be proved by equational reasoning.
The addition of total and finite natural numbers terminates. This is

represented following (4.5) by the theorem

+-N : ∀ {m n} → N m → N n → N (m + n). (4.15)

Given the property

+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity = +-0x

the proof of (4.15) is implemented by pattern matching on the proof that the
first argument is a total and finite natural number, and using the conversion
rules for the addition and the substitutivity property of equality.

1 +-N : ∀ {m n} → N m → N n → N (m + n)
2 +-N {n = n} nzero Nn = subst N (sym (+-leftIdentity n)) Nn
3 +-N {n = n} (nsucc {m} Nm) Nn =
4 subst N (sym (+-Sx m n)) (nsucc (+-N Nm Nn)).
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Line 2 corresponds to the proof of the base case nzero, where we use the
totality hypothesis for n and a proof that n ≡ zero + n. Lines 3 and 4 cor-
respond to the proof of the inductive step nsucc Nm, where we use the in-
ductive hypothesis represented by the recursive call +-N Nm Nn, and a proof
that succ₁ (m + n) ≡ succ₁ m + n.

The proof in the previous example shows the methodology we use in our
programming logic LTPCF (which will also be used, with some improvements,
in our programming logic described in Chapter 5). We first define a function f
over the domain D of possibly partial elements. Recall that this domain is not
an inductive data type, so we cannot use Agda’s support for inductive types
to prove properties of f. However, since the partial function f is intended to
be used on total and finite elements, when we want to prove a property P of f,
we add hypotheses requiring that the elements on which f will be applied
should be total and finite. Given that the predicates stating the totality
of the elements are inductively defined, the property P can be proved by
structural recursion over these inductive predicates.

Example 4.13. Subtraction and multiplication on the (partial) natural
numbers are also recursively defined using the rec combinator, and their
associated conversion rules can also be proved by equational reasoning.

_∸_ : D → D → D
m ∸ n = rec n m (lam (λ _ → lam pred₁))

∸-x0 : ∀ n → n ∸ zero ≡ n
∸-xS : ∀ m n → m ∸ succ₁ n ≡ pred₁ (m ∸ n)

_*_ : D → D → D
m * n = rec m zero (lam (λ _ → lam (λ x → n + x)))

*-0x : ∀ n → zero * n ≡ zero
*-Sx : ∀ m n → succ₁ m * n ≡ n + m * n.

The termination of these operations is represented by the theorems

∸-N : ∀ {m n} → N m → N n → N (m ∸ n)
*-N : ∀ {m n} → N m → N n → N (m * n)

and their proofs are similar to the termination proof of the addition in
Example 4.12. Namely, these proofs are performed by pattern matching on
proofs that the arguments m and n are total and finite natural numbers, and
using the conversion rules for the operations and the substitutivity property
of equality.

The following example, we show how to prove by structural recursion
properties of postulated functions when they are applied to total and finite
values.
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Example 4.14. In this example we prove the commutativity of addition of
total and finite natural numbers represented by the formula

∀𝑚 𝑛. 𝒩(𝑚) ⊃ 𝒩(𝑛) ⊃ 𝑚 + 𝑛 = 𝑛 + 𝑚. (4.16)

The proof is implemented by pattern matching on the proof that the first
argument is a total and finite natural number

+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m.

The proof of the base case nzero is based on equational reasoning

+-comm {n = n} nzero Nn = zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity Nn) ⟩
n + zero ∎

where

+-rightIdentity : ∀ {n} → N n → n + zero ≡ n.

The proof of the step case is also based on equational reasoning

1 +-comm {n = n} (nsucc {m} Nm) Nn =
2 succ₁ m + n ≡⟨ +-Sx m n ⟩
3 succ₁ (m + n) ≡⟨ succCong (+-comm Nm Nn) ⟩
4 succ₁ (n + m) ≡⟨ sym (x+Sy≡S[x+y] Nn m) ⟩
5 n + succ₁ m ∎

where

succCong : ∀ {m n} → m ≡ n → succ₁ m ≡ succ₁ n
x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n).

This simple proof illustrates some features common to many
LTPCF-proofs. Given that the domain D is not inductively defined, we cannot
defined _+_ in (4.14) by structural recursion; still, we can use induction to
prove the property +-comm by requiring that m and n are total and finite.
On the other hand, since the function _+_ is defined from postulated com-
binators (with associated postulated conversion rules), we cannot use Agda’s
type checker to fully normalise it as we did in the Example 3.18 (note the
extra equational reasoning step in line 2 in the above proof). In general, the
problem is that Agda does not know how to normalise an LTPCF-program,
so each normalisation step in the proof has to be performed manually. The
conversion rules for the LTPCF basic combinators are given by postulates and
hence they do not contribute to the usual normalisation provided by Agda’s
type checker. To compensate for this loss, we developed the Apia program,
which will allow us to automate much of the reasoning needed in order to
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prove this kind of theorems. The use of this program will be demonstrated
in Chapter 6.

In the next example, we define some functions and predicates, and we
prove a couple of properties related to inequalities of total and finite natural
numbers, required by later examples,

Example 4.15. Using the fixed-point operator fix, we can define the less-
than function

lt : D → D → D

on (partial) natural numbers, satisfying the following conversion rules:

lt-00 : lt zero zero ≡ false
lt-0S : ∀ n → lt zero (succ₁ n) ≡ true
lt-S0 : ∀ n → lt (succ₁ n) zero ≡ false
lt-SS : ∀ m n → lt (succ₁ m) (succ₁ n) ≡ lt m n.

Associated with the less-than function (lt) returning a truth value, we define
the less-than relation (_<_), that is, an operator that returns a set, by

_<_ : D → D → Set
m < n = lt m n ≡ true.

Similarly, we define the not-less-than relation (_≮_):

_≮_ : D → D → Set
m ≮ n = lt m n ≡ false.

If m and n are total and finite natural numbers, the fact that lt m n
terminates on a total and finite Boolean value formalised by

lt-Bool : ∀ {m n} → N m → N n → Bool (lt m n)

can be proved similarly to the proof of termination of the addition func-
tion in Example 4.12: the proof is by pattern matching on proofs that the
arguments m and n are total and finite natural numbers, and it uses the
conversion rules associated with the function, the substitutivity property of
equality, and a recursive call.

The less-than-or-equal (le), greater-than (gt) and greater-than-or-equal
(ge) functions are defined from the function lt. The related relations _≤_,
_≰_, _>_, _≯_, _≥_ and _≱_ are defined similarly to the relations _<_ and _≮_.

Using the above definitions, we can represent the theorem that if m and n
are total and finite natural numbers, the order _>_ is decidable

x>y∨x≯y : ∀ {m n} → N m → N n → m > n ∨ m ≯ n

which can be proved by pattern matching on proofs that the arguments m
and n are total and finite natural numbers.

63



4. Logical Theory of Constructions

4.5 Verification of General Recursive Programs

To illustrate how to reason about general recursive programs using LTPCF, we
shall verify the program which computes the greatest common divisor of two
natural numbers using Euclid’s algorithm. A naive Haskell implementation
of the algorithm is given by

gcd ∷ Nat → Nat → Nat
gcd m n =

if n == 0
then m
else if m == 0

then n
else if m > n then gcd (m - n) n else gcd m (n - m)

where we follow the common convention that gcd 0 0 = 0 (see, for example,
Knuth [1997]). The above program is not structurally recursive because its
recursive calls are not on structurally smaller arguments.

The gcd algorithm. The LTPCF-program which computes the gcd program
above is given by

fix 𝑔.𝜆𝑚.𝜆𝑛.
if · (iszero · 𝑛)·

𝑚 ·
(if · (iszero · 𝑚) · 𝑛 · (if · (gt 𝑚 𝑛) · (𝑔 · (𝑚 ∸ 𝑛) · 𝑛) · (𝑔 · 𝑚 · (𝑛 ∸ 𝑚))))

We now use the representation of the LTPCF-terms to formalise the gcd
algorithm:

gcdh : D → D
gcdh g = lam (λ m → lam (λ n →

if (iszero₁ n)
then m
else (if (iszero₁ m)

then n
else (if (gt m n)

then g · (m ∸ n) · n
else g · m · (n ∸ m)))))

gcd : D → D → D
gcd m n = fix gcdh · m · n.

From the definition of gcd, we prove the following five conversion rules,
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which will be useful when proving properties about the algorithm:

gcd-00 : gcd zero zero ≡ zero

gcd-S0 : ∀ n → gcd (succ₁ n) zero ≡ succ₁ n

gcd-0S : ∀ n → gcd zero (succ₁ n) ≡ succ₁ n

gcd-S>S : ∀ m n → succ₁ m > succ₁ n →

gcd (succ₁ m) (succ₁ n) ≡ (4.17)
gcd (succ₁ m ∸ succ₁ n) (succ₁ n)

gcd-S≯S : ∀ m n → succ₁ m ≯ succ₁ n →

gcd (succ₁ m) (succ₁ n) ≡

gcd (succ₁ m) (succ₁ n ∸ succ₁ m).

Although the above conversion rules follow rather straightforwardly from
the definition of gcd and the conversion rules of LTPCF, proving them using
equational reasoning is a surprisingly time-consuming task in our formalisa-
tion. As mentioned in connection to Example 4.14, the problem is that Agda
does not know how to normalise the gcd program and many steps need to be
performed manually. However, the above conversion rules can be automat-
ically proved by the ATPs with the help of our Apia program, as we shall
illustrate in Chapter 6.

Next, we shall show that the gcd algorithm is correct and that it termin-
ates with the greatest common divisor of its two inputs.

Termination of gcd algorithm. The termination theorem for gcd states
that if m and n are total and finite natural numbers, then gcd m n is also a
total and finite natural number:

gcd-N : ∀ {m n} → N m → N n → N (gcd m n).

We first prove the following theorems using the substitutivity property of
equality:

gcd-00-N : N (gcd zero zero)

gcd-0S-N : ∀ {n} → N n → N (gcd zero (succ₁ n))

gcd-S0-N : ∀ {n} → N n → N (gcd (succ₁ n) zero)

gcd-S>S-N : ∀ {m n} → N m → N n →
N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) →
succ₁ m > succ₁ n →
N (gcd (succ₁ m) (succ₁ n))

gcd-S≯S-N : ∀ {m n} → N m → N n →
N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) →
succ₁ m ≯ succ₁ n →
N (gcd (succ₁ m) (succ₁ n)).
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These five theorems show that the left-hand sides of the conversion rules
of gcd defined in (4.17) terminate. Note that the last two theorems have an
extra hypothesis stating that the result of the recursive call corresponding to
the case we are considering (that is, the right-hand side of the corresponding
conversion rule) also terminates.

Now, given the lexicographic order on pairs of (partial) natural numbers

Lexi : D → D → D → D → Set
Lexi m n m' n' = m < m' ∨ m ≡ m' ∧ n < n'

we prove two auxiliary theorems. The first theorem concerns the termination
of gcd m n when the total and finite numbers m and n are such that m > n.

gcd-x>y-N : ∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → N (gcd o p)) →
m > n →
N (gcd m n).

The other auxiliary theorem is similar but concerns the case where m ≯ n.

gcd-x≯y-N : ∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → N (gcd o p)) →
m ≯ n →
N (gcd m n).

Both theorems are proved by pattern matching on proofs that the argu-
ments m and n are total and finite natural numbers. They use (some of)
the previous five theorems associated with the termination of the conversion
rules of the gcd.

Next, we use well-founded induction on the lexicographical order Lexi

Lexi-wfind :
(A : D → D → Set) →
(∀ {m₁ n₁} → N m₁ → N n₁ →

(∀ {m₂ n₂} → N m₂ → N n₂ → Lexi m₂ n₂ m₁ n₁ → A m₂ n₂) →
A m₁ n₁) →

∀ {m n} → N m → N n → A m n

to prove that gcd terminates. The induction principle Lexi-wfind is proved
by pattern matching on proofs that m and n are total and finite natural
numbers.

Note that if in Lexi-wfind we take A such that

A : D → D → Set
A m n = N (gcd m n)
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then, the type that results from Lexi-wfind, when applied to m and n and
proofs that they are total and finite, is the same as the type that results
from the auxiliary theorems gcd-x>y-N and gcd-x≯y-N. Moreover, the third
explicit premises in gcd-x>y-N and gcd-x≯y-N correspond to the premise of
the step case in the induction principle Lexi-wfind.

Finally, the proof of termination of gcd is formalised as

gcd-N : ∀ {m n} → N m → N n → N (gcd m n)
gcd-N = Lexi-wfind A h

where
A : D → D → Set
A i j = N (gcd i j)

h : ∀ {i j} → N i → N j →
(∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j

h Ni Nj ah =
case (gcd-x>y-N Ni Nj ah) (gcd-x≯y-N Ni Nj ah)

(x>y∨x≯y Ni Nj).

Correctness of gcd algorithm. We now show that gcd returns the
greatest common divisor of two total and finite numbers.

Let us first define the divisibility relation by

_∣_ : D → D → Set
m ∣ n = ∃[ k ] N k ∧ n ≡ k * m.

That is, m divides n if there exists a total and finite natural number k such
n ≡ k * m. Note that, according to our convention that the greatest common
divisor of zero and zero is zero, zero divides zero. Therefore the gcd of two
numbers m and n is a common divisor of m and n that is divisible by any
common divisor of them; that is, gcd m n is the greatest common divisor
of m and n according to the partial order _∣_, and not to the usual greater-
than order.

That two elements have a common divisor is expressed by

CD : D → D → D → Set
CD m n cd = cd ∣ m ∧ cd ∣ n.

That a certain element is divisible by any common divisor is expressed by

Divisible : D → D → D → Set
Divisible m n o = ∀ cd → N cd → CD m n cd → cd ∣ o.

That an element is the greatest common divisor is expressed by

gcdSpec : D → D → D → Set
gcdSpec m n gcd = CD m n gcd ∧ Divisible m n gcd.
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Our correctness theorem is thus

gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n).

To prove this theorem we need only to combine a proof that the result
of gcd m n is a common divisor of m and of n, and a proof that gcd m n is
divisible by any common divisor of m and n.

The proof that gcd m n is a common divisor of m and n

gcdCD : ∀ {m n} → N m → N n → CD m n (gcd m n)

follows a similar structure to the proof of the termination of the gcd. Hence,
we show only the main steps.

First, we prove the following five theorems:

gcd-00-CD : CD zero zero (gcd zero zero)

gcd-0S-CD : ∀ {n} → N n → CD zero (succ₁ n) (gcd zero (succ₁ n))

gcd-S0-CD : ∀ {m} → N m → CD (succ₁ m) zero (gcd (succ₁ m) zero)

gcd-S>S-CD : ∀ {m n} → N m → N n →
(CD (succ₁ m ∸ succ₁ n) (succ₁ n)

(gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) →
succ₁ m > succ₁ n →
CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))

gcd-S≯S-CD : ∀ {m n} → N m → N n →
(CD (succ₁ m) (succ₁ n ∸ succ₁ m)

(gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) →
succ₁ m ≯ succ₁ n →
CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))

which state that the common divisor relation holds for the result of the left-
hand side of the five conversion rules of gcd presented in (4.17). As in the
termination proof of the gcd program, in the two cases where it performs a
recursive call, we need to add an extra hypothesis stating that the property
holds for the result of the recursive call.

Next, we prove the auxiliary theorems stating that gcd m n is a common
divisor of m and n, both when m and n are such that m > n and when m ≯ n.
Then, we wrap up all the intermediate results using the well-founded induc-
tion Lexi-wfind on the lexicographic order Lexi to obtain the desired result,
namely, that gcd m n is a common divisor of m and of n.

Now, the proof that gcd m n is divisible by any common divisor of m
and n

gcdDivisible : ∀ {m n} → N m → N n → Divisible m n (gcd m n)
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follows the same structure as the previous proofs.
Putting all this together, our correctness proof becomes:

gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n)
gcdCorrect Nm Nn = gcdCD Nm Nn , gcdDivisible Nm Nn.
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Chapter 5

First-Order Theory of
Combinators

A goal of this thesis is to provide a programming logic for proving properties
of lazy functional programs by combining interactive and automatic proofs.
The interactive proofs will be performed with the help of Agda’s proof engine
and the automatic proofs will be performed by off-the-shelf ATPs. The first-
order theory of combinators (henceforth, FOTC) is our programming logic
defined for this purpose.

LTPCF is a programming logic for a version of PCF, which is not strictly a
first-order theory, where we deal with inductive data types for Booleans and
natural numbers. FOTC is a strictly first-order theory, where we deal with
additional inductive and co-inductive data types like lists, trees, streams and
so on, provided that they meet certain properties.

Using FOTC, we can prove properties of programs over total (finite or
potentially infinite) values defined by nested recursion, higher-order recur-
sion, without a termination proof, guarded co-recursion or unguarded co-
recursion. In Chapter 7, we shall verify some programs with these charac-
teristics. The properties are proved using equational reasoning, induction
and/or co-induction.

Since we want to use automatic proofs performed by ATPs, in § 5.1 we
define FOTC as a first-order version of LTPCF. In § 5.2, we discuss how to
represent higher-order functions in FOTC. In § 5.3, we establish the con-
ditions needed in order to add new inductive data types while keeping the
consistency of the theory, and we show some examples of such new induct-
ively defined types. In § 5.4, we show an alternative formalisation of the
inductive data types, which will be the base of our formalisation of the co-
inductive data types. In § 5.5, we establish the conditions needed in order to
add co-inductive data types keeping the consistency of the theory as before,
and we show some examples of such co-inductively defined types.

71



5. First-Order Theory of Combinators

5.1 A First-Order Theory
FOTC is a classical first-order theory with equality. We start by defining
FOTC as a first-order version of LTPCF. A 𝜆-expression can be turned into
an FOTC-term by performing 𝜆-lifting [Peyton Jones 1987]. Instead of using
𝜆-expressions, we add a new function symbol for each recursive function
definition of the form

f · 𝑥1 · ⋯ · 𝑥𝑛 = 𝑒[f, 𝑥1, … , 𝑥𝑛]. (5.1)

Consequently, the grammar for the terms of FOTC is now

Terms ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑡 · 𝑡 application
∣ true ∣ false ∣ if partial Boolean constants
∣ 0 ∣ succ ∣ pred ∣ iszero partial natural number constants
∣ f function constant

where f ranges over new combinators defined by (5.1).
Note that FOTC is a first-order theory: there are no 𝜆-abstractions. Note

also that there is no fixed-point operator. If we start with a term in LTPCF,
we can always translate it into an equation in FOTC by performing 𝜆-lifting
and replacing sub-expressions of the form fix 𝑥.𝑡 by recursive definitions. For
this, we need to introduce new function symbols and new (possibly recursive)
equations.

The FOTC-formulae are the same as the LTPCF-formulae, that is, they
are generated by the following grammar:

Formulae ∋ 𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood
∣ 𝐴 ⊃ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 binary logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate
∣ ℬ𝑜𝑜𝑙(𝑡) total Booleans predicate
∣ 𝒩(𝑡) total natural numbers predicate

Conventions 5.1. We follow the same conventions as with the LTPCF-for-
mulae (see conventions 4.1). Moreover, we continue using the more conveni-
ent function symbols if_then_else_, succ₁, and so on (see convention 4.10).

Terms 𝑡 and formulae 𝐴 are formed in the usual way. The FOTC non-
logical axioms and axiom schemata (conversion rules, discrimination rules,
introduction and elimination rules for the inductive predicates ℬ𝑜𝑜𝑙 and 𝒩)
are the same as those for LTPCF with the following exceptions: (i) we removed

72



§ 5.1. A First-Order Theory

the conversion rules (4.1b) related to the 𝜆-abstraction and the fixed-point
operator and (ii) we added the conversion rules generated by (5.1).

For our Agda formalisation of FOTC, we use an inductive representa-
tion like the one used for LTPCF and described in § 4.3, removing the four
postulates related to the 𝜆-abstraction and the fixed-point operator—we re-
moved the terms lam and fix in (4.8), and the conversion rules beta and
fix-eq in (4.9). Although FOTC is a first-order version of LTPCF which will
allow the combination of interactive and automatics proofs as described in
Chapter 6, most of the LTPCF-proofs are valid FOTC-proofs in the following
sense. In LTPCF, we define a new function symbol from the fixed set of terms
of LTPCF (or from a function symbol defined from this fixed set) and we prove
some conversion rules associated with it using equational reasoning. From
these conversion rules, we can prove in LTPCF properties of the new function
symbol. In FOTC, we introduce the new function symbol and its associated
recursive equations (5.1) as axioms. From these equations, we also prove the
same conversion rules by equational reasoning, therefore an LTPCF-proof of
a property, which does not use the non-FOL features of LTPCF, is also a
valid proof of the corresponding property in FOTC.

In the following example, we show how to define a new recursive function
using an equation of the form (5.1).

Example 5.2. For our first FOTC example, we shall not use the function
symbols added in convention 4.10.

Instead of defining the addition of natural numbers using the combinator
rec—defined using the 𝜆-abstraction and the fixed-point operator—we add
the function constant add and its associated recursive equation.

postulate
add : D
add-eq : ∀ m n → add · m · n ≡

if · (iszero · m) · n ·
(succ · (add · (pred · m) · n)).

From the equation add-eq it is possible to prove the conversion rules

postulate
add-0x : ∀ n → add · zero · n ≡ n
add-Sx : ∀ m n → add · (succ · m) · n ≡ succ · (add · m · n)

by equational reasoning.

Where appropriate, we shall define 𝑛-ary function symbols instead of
(nullary) function constants. Convention 4.10 illustrated how to define 𝑛-ary
function symbols from function constants and the FOTC-terms. In the fol-
lowing examples, we illustrate this.

73



5. First-Order Theory of Combinators

Example 5.3. The LTPCF-proofs proving the termination and the com-
mutativity of the addition of total and finite natural numbers shown in
Examples 4.12 and 4.14, respectively, are implemented in FOTC as follows.

Instead of defining the addition of natural numbers by adding a function
constant, we add the binary function symbol _+_ and its associated recursive
equation.

postulate
_+_ : D → D → D
+-eq : ∀ m n →

m + n ≡ if (iszero₁ m) then n else succ₁ (pred₁ m + n).

From the equation +-eq it is possible to prove by equational reasoning the
conversion rules

+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n).

As the proofs of the Theorems 4.15 and 4.16 in LTPCF are based on these
conversion rules, the LTPCF-proofs in Examples 4.12 and 4.14 are also valid
proofs of the corresponding theorems in FOTC.

For convenience, we might actually define function symbols by directly
introducing the conversion rules associated to the recursive definition,
whenever it is clear that these conversion rules can be replaced by a single
recursive equation of the form (5.1) using the FOTC-terms. In the following
examples, we illustrate this.

Example 5.4. Instead of defining the addition of natural numbers using
the equation +-eq in Example 5.3, we define it by the following equations:

postulate
_+_ : D → D → D
+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n).

Similarly, we define subtraction and multiplication of natural numbers
by the following equations:

postulate
_∸_ : D → D → D
∸-x0 : ∀ n → n ∸ zero ≡ n
∸-xS : ∀ m n → m ∸ succ₁ n ≡ pred₁ (m ∸ n)

_*_ : D → D → D
*-0x : ∀ n → zero * n ≡ zero
*-Sx : ∀ m n → succ₁ m * n ≡ n + m * n.
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In the following example, we discuss the verification of the program which
computes the greatest common divisor of two natural numbers using Euclid’s
algorithm, which was showed in § 4.5, using FOTC.

Example 5.5. The representation of the gcd algorithm in FOTC is given by

postulate
gcd : D → D → D
gcd-eq : ∀ m n → gcd m n ≡

if (iszero₁ n)
then m
else (if (iszero₁ m)

then n
else (if (gt m n)

then gcd (m ∸ n) n
else gcd m (n ∸ m))).

From this representation of gcd, the conversion rules gcd-00, gcd-S0, gcd-0S,
gcd-S>S and gcd-S≯S defined in (4.17) can be proved by equational reasoning.
Since the termination proof and the correctness proof of the gcd algorithm
given in § 4.5 are based on these conversion rules, both LTPCF-proofs are
also valid FOTC-proofs.

To establish the consistency of FOTC, we can build a model of FOTC as
follows. We already discussed in § 4.2 how to build a domain model of LTPCF.
We can replace all function symbols and their defining equations (5.1) by in-
troducing 𝜆-abstractions for explicit definitions, fixed-point combinators for
recursive definitions, and case analysis constants for definitions by pattern
matching (see, for example, Dybjer [2004] and Mitchell [1996]).

5.2 Representation of Higher-Order Functions
Since FOTC is a first-order theory with application as a binary function sym-
bol, that is _·_ : D → D → D, we can represent higher-order functions that
for example take one function as argument by representing this function-
argument as a constant and using _·_ for applying this function-argument
to its own arguments.

In the following example, we show how to represent a higher-order func-
tion in FOTC.

Example 5.6. The higher-order function that applies a unary function
twice is formalised by the axioms

postulate
twice : D → D → D
twice-eq : ∀ f x → twice f x ≡ f · (f · x).
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Using the axiom twice-eq, we can prove for example, the following simple
theorem:

twice-succ : ∀ n → twice succ n ≡ succ · (succ · n)
twice-succ n = twice succ n ≡⟨ twice-eq succ n ⟩

succ · (succ · n) ∎

In this particular example, given that the function twice is not recursive,
it is better to formalise it by the following definition, which uses Agda’s defin-
itional equality (=) instead of FOTC’s propositional equality (≡):

twice : D → D → D
twice f x = f · (f · x).

Using the above definition and Agda’s normalisation, the proof of the
theorem twice-succ is just

twice-succ : ∀ n → twice succ n ≡ succ · (succ · n)
twice-succ n = refl.

5.3 Adding New Inductive Predicates
Magnusson and Nordström [1994, p. 213] state: “During the years we have
learned that there is no such thing as ‘the logic of programming’ … Programs
are manipulating different kinds of objects, and it would be very awkward to
code these objects into a fixed set of objects.” Consistent with the previous
claim, FOTC is not one first-order theory, it is a family of first-order the-
ories. We work with one FOTC for each verification problem. The function
symbols are determined by the program we want to verify. The predicate
symbols are determined by the inductively defined predicates we need in our
proofs. In this section, we show some examples where we add new induct-
ively defined predicates, and we spell out the conditions required for keeping
the consistency of the theory.

The inductively defined predicates might not only be used for represent-
ing totality properties. In the following example, we illustrate this.
Example 5.7. We may add a new unary predicate symbol ℰ𝑣𝑒𝑛 with intro-
duction rules stating that 0 is an even number and that even numbers are
closed under the function which adds 2 to an even number, and the induction
schema stating that ℰ𝑣𝑒𝑛 is the least predicate with those properties.

,
ℰ𝑣𝑒𝑛(0)

ℰ𝑣𝑒𝑛(𝑡) ,
ℰ𝑣𝑒𝑛(succ · (succ · 𝑡))

ℰ𝑣𝑒𝑛(𝑡) 𝐴(0)

[𝐴(𝑡′)]
⋮

𝐴(succ · (succ · 𝑡′)) .
𝐴(𝑡)
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Let D be a domain model of LTPCF, that is, D is a domain model of
FOTC as described in § 5.1. In order to characterise those inductively defined
predicates that can be interpreted on D, we shall describe an alternative
presentation of them.

Let Ψ(𝑋, 𝑥) be a formula with a free predicate variable 𝑋 and 𝑛 free
variables 𝑥. The formula Ψ(𝑋, 𝑥) is called 𝑋-positive if all occurrences of
the predicate variable 𝑋 are positive.

Dybjer and Sander [1989] used the 𝜇-calculus of Park [1976] as a logical
setting for proving properties of functional programs by induction and co-
induction. Park’s 𝜇-calculus is an extension of first-order classical logic with
a 𝜇-operator: for any 𝑋-positive formula Ψ(𝑋, 𝑥) we can form the formula
𝜇𝑋.Ψ(𝑋, 𝑥), which represents an 𝑛-ary inductive predicate 𝒫, with axioms
stating that:

𝜇𝑋.Ψ(𝑋, 𝑥) is a pre-fixed point of Ψ(𝑋, 𝑥), (5.2a)
𝜇𝑋.Ψ(𝑋, 𝑥) is least among all pre-fixed points of Ψ(𝑋, 𝑥). (5.2b)

The axioms (5.2a) and (5.2b) correspond to the introduction and elimin-
ation rules for the predicate 𝒫, respectively. These axioms together ex-
press that the formula 𝜇𝑋.Ψ(𝑋, 𝑥) is the least fixed-point of the formula
Ψ(𝑋, 𝑥). The 𝑛-ary inductively defined predicates 𝒫 represented by the for-
mulae 𝜇𝑋.Ψ(𝑋, 𝑥) can be interpreted as subsets of D modelled as least
fixed-points of monotone operators on subsets of D induced by the formu-
lae Ψ(𝑋, 𝑥) [Moschovakis 1974]. The monotonicity of these operators is a
consequence of the 𝑋-positivity of the formulae Ψ(𝑋, 𝑥) (see, for example,
Moschovakis [1974], Dybjer and Sander [1989] and J. Harrison [1995]), and
therefore it will be the condition required to add new inductively defined
predicates.

Remark 5.8. The interpretation of inductively defined predicates as least
fixed-points of monotone operators on subsets of D induced by formulae
Ψ(𝑋, 𝑥) or induced by rule sets as shown in § 4.2 are inter-definable (see, for
example, Dybjer [1988]). We use the latter interpretation because we think
it is more adequate to inductive definitions of predicates, and we use the
former interpretation because we think it is more adequate to spell out the
conditions required for keeping the consistency of FOTC under the addition
of new inductively defined predicates. This remark will also be applicable to
the interpretation of the co-inductively defined predicates shown in § 5.5.

In the following example, we represent an inductive predicate by an
𝑋-positive formula.

Example 5.9. We can represent the inductive predicate ℰ𝑣𝑒𝑛 (see Ex-
ample 5.7) by the formula

Ψ(𝑋, 𝑥) def= 𝑥 = 0 ∨ (∃𝑥′. 𝑥 = succ · (succ · 𝑥′) ∧ 𝑋(𝑥′)). (5.3)
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Given that the formula (5.3) is 𝑋-positive, the predicate ℰ𝑣𝑒𝑛 can be inter-
preted by an inductively defined set 𝐼(Φ) associated with a rule set Φ on D,
as we did for the interpretation of the predicates ℬ𝑜𝑜𝑙 and 𝒩 in § 4.2.

Example 5.10 (Counterexample). An alternative definition for the predic-
ate of being an even natural numbers is:

• 0 is an even number, and

• succ · 𝑛 is an even number if 𝑛 is not an even number.

The introduction rules for a unary inductive predicate ℰ𝑣𝑒𝑛 from the above
description are

,
ℰ𝑣𝑒𝑛(0)

¬ ℰ𝑣𝑒𝑛(𝑡) ,
ℰ𝑣𝑒𝑛(succ · 𝑡)

and the associated formula is

Ψ(𝑋, 𝑥) def= 𝑥 = 0 ∨ (∃𝑥′. 𝑥 = succ · 𝑥′ ∧ ¬ 𝑋(𝑥′)). (5.4)

Given that the formula (5.4) is not 𝑋-positive, the predicate ℰ𝑣𝑒𝑛 defined
in this way is not a valid FOTC-predicate.

Remark 5.11. In the sequel, the new conversion and discrimination rules
only hold in a lazy functional programming language and (some of them)
should be different for a non-lazy language.

In the following example, we add new FOTC-terms as preparation for
the addition of a new inductive predicate.

Example 5.12. FOTC basic data types are Booleans and natural numbers.
To use lists we add the constants

{[ ], cons, null, head, tail} (5.5)

to the set of FOTC-terms. Moreover, we add the conversion rules

null · [ ] = true,
∀𝑡 𝑡𝑠. null · (cons · 𝑡 · 𝑡𝑠) = false,

∀𝑡 𝑡𝑠. head · (cons · 𝑡 · 𝑡𝑠) = 𝑡,
∀𝑡 𝑡𝑠. tail · (cons · 𝑡 · 𝑡𝑠) = 𝑡𝑠,

and the discrimination rule

∀𝑡 𝑡𝑠. [ ] ≠ cons · 𝑡 · 𝑡𝑠.
Let LL be the 𝜔-cpo of lazy lists (see, for example, Schmidt [1986]).

Let us add LL to the domain model D, that is, let D be a solution to the
recursive domain equation

D ≅ B⊥ ⊕ LN ⊕ LL ⊕ (D → D)⊥.
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Based on the fixed-point operator of the new domain, it is possible to inter-
pret the terms, conversion and discrimination rules for partial lists on the
new domain.

For the implementation of the lists, we postulate the terms and the
conversion and discrimination rules in the usual way.

Convention 5.13. We define more readable function symbols of the ap-
propriate types for some of the constants in (5.5). In particular, we define
the right-associative function symbol

_∷_ : D → D → D
x ∷ xs = cons · x · xs.

In the following example, we add a new inductive predicate to FOTC.

Example 5.14. Given the combinators for lists (5.5), we define a unary
inductive predicate ℒ𝑖𝑠𝑡(𝑡𝑠) representing that 𝑡𝑠 is a total and finite list of
elements. The introduction rules for ℒ𝑖𝑠𝑡 are

,
ℒ𝑖𝑠𝑡([ ])

ℒ𝑖𝑠𝑡(𝑡𝑠) (𝑡 ∈ Terms),ℒ𝑖𝑠𝑡(cons · 𝑡 · 𝑡𝑠)

and its elimination rule is

ℒ𝑖𝑠𝑡(𝑡𝑠) 𝐴([ ])

[𝐴(𝑡𝑠′)]
⋮

𝐴(cons · 𝑡 · 𝑡𝑠′)
𝐴(𝑡𝑠)

The predicate ℒ𝑖𝑠𝑡 is interpretable in the domain model D (appropri-
ately extended) because the formula that represents it, given by

Ψ(𝑋, 𝑥) def= 𝑥 = [ ] ∨ (∃𝑥′ 𝑥𝑠′. 𝑥 = cons · 𝑥′ · 𝑥𝑠′ ∧ 𝑋(𝑥𝑠′))

is 𝑋-positive.
We implement the introduction rules of ℒ𝑖𝑠𝑡 by an inductive family on D,

as we did for the inductive implementation of the predicates ℬ𝑜𝑜𝑙 and 𝒩
in § 4.3. It is not necessary to implement the elimination rule of ℒ𝑖𝑠𝑡 because
we shall use Agda’s pattern matching instead.

data List : D → Set where
lnil : List []
lcons : ∀ x {xs} → List xs → List (x ∷ xs).

Note that in our implementation we have used the convention 5.13.
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Recall that FOTC is a type-free theory. Using the inductive predicate
ℒ𝑖𝑠𝑡, we can prove that functions defined on lists are terminating functions.
In the following example, we illustrate this.

Example 5.15. We first define the length of a list by a function returning
an element of D, then we use the inductive predicate ℒ𝑖𝑠𝑡 to prove that the
length of a total and finite list is a total and finite natural number. The
proof is by pattern matching on a proof that the list is total and finite.

postulate
length : D → D
length-[] : length [] ≡ zero
length-∷ : ∀ x xs → length (x ∷ xs) ≡ succ₁ (length xs)

length-N : ∀ {xs} → List xs → N (length xs)
length-N lnil = subst N (sym length-[]) nzero
length-N (lcons x {xs} Lxs) =

subst N (sym (length-∷ x xs)) (nsucc (length-N Lxs)).

Using the inductive predicate ℒ𝑖𝑠𝑡, we can also prove the usual properties
of total and finite lists. In the following examples, we prove some of these
properties.

Example 5.16. We prove that the concatenation of total and finite lists is
associative.

First, we define a right-associative concatenation function by postulating
the following equations:

infixr 8 _++_
postulate

_++_ : D → D → D
++-[] : ∀ ys → [] ++ ys ≡ ys
++-∷ : ∀ x xs ys → (x ∷ xs) ++ ys ≡ x ∷ (xs ++ ys).

Now, given the properties

++-leftCong : ∀ {xs ys zs} → xs ≡ ys → xs ++ zs ≡ ys ++ zs
++-leftCong refl = refl

∷-rightCong : ∀ {x xs ys} → xs ≡ ys → x ∷ xs ≡ x ∷ ys
∷-rightCong refl = refl

++-leftIdentity : ∀ xs → [] ++ xs ≡ xs
++-leftIdentity = ++-[]

the proof of the associativity of _++_ is given by
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++-assoc : ∀ {xs} → List xs → ∀ ys zs →
(xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

++-assoc lnil ys zs =
([] ++ ys) ++ zs ≡⟨ ++-leftCong (++-leftIdentity ys) ⟩
ys ++ zs ≡⟨ sym (++-leftIdentity (ys ++ zs)) ⟩
[] ++ ys ++ zs ∎

++-assoc (lcons x {xs} Lxs) ys zs =
((x ∷ xs) ++ ys) ++ zs ≡⟨ ++-leftCong (++-∷ x xs ys) ⟩
(x ∷ (xs ++ ys)) ++ zs ≡⟨ ++-∷ x (xs ++ ys) zs ⟩
x ∷ ((xs ++ ys) ++ zs) ≡⟨ ∷-rightCong (++-assoc Lxs ys zs) ⟩
x ∷ (xs ++ ys ++ zs) ≡⟨ sym (++-∷ x xs (ys ++ zs)) ⟩
(x ∷ xs) ++ ys ++ zs ∎

Note that the proof is by pattern matching on a proof that the first explicit
argument is List xs, therefore it is not necessary that the arguments ys
and zs are total and finite lists.

Example 5.17. Using our approach for formalising higher-order functions
described in § 5.2, we define the map function on lists by the following axioms:

postulate
map : D → D → D
map-[] : ∀ f → map f [] ≡ []
map-∷ : ∀ f x xs → map f (x ∷ xs) ≡ f · x ∷ map f xs.

Now, using the inductive predicate List and given the property

mapRightCong : ∀ {f xs ys} → xs ≡ ys → map f xs ≡ map f ys
mapRightCong refl = refl

we prove the map f distributes through concatenation:

map-++ : ∀ f {xs} → List xs → ∀ ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys

map-++ f lnil ys =
map f ([] ++ ys) ≡⟨ mapRightCong (++-leftIdentity ys) ⟩
map f ys ≡⟨ sym (++-leftIdentity (map f ys)) ⟩
[] ++ map f ys ≡⟨ ++-leftCong (sym (map-[] f)) ⟩
map f [] ++ map f ys ∎

map-++ f (lcons x {xs} Lxs) ys =
map f ((x ∷ xs) ++ ys)

≡⟨ mapRightCong (++-∷ x xs ys) ⟩
map f (x ∷ xs ++ ys)
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≡⟨ map-∷ f x (xs ++ ys) ⟩
f · x ∷ map f (xs ++ ys)

≡⟨ ∷-rightCong (map-++ f Lxs ys) ⟩
f · x ∷ (map f xs ++ map f ys)

≡⟨ sym (++-∷ (f · x) (map f xs) (map f ys)) ⟩
(f · x ∷ map f xs) ++ map f ys

≡⟨ ++-leftCong (sym (map-∷ f x xs)) ⟩
map f (x ∷ xs) ++ map f ys ∎

Similarly to Example 5.16, the proof is by pattern matching on a proof that
the second explicit argument is List xs, therefore it is not necessary that
the argument ys is a total and finite list.

Mutually defined inductive predicates can be added to FOTC much in
the same way as simple inductive predicates. The validity of them is based
on the fact that one could instead use a simple inductive predicate and
the combinators for disjoint union in order to model the formalisation of
mutually defined inductive predicates [Paulson 1994a].

In the following example, we show how to add mutually defined inductive
predicates to FOTC.

Example 5.18. Let D be a domain model of FOTC, the mutually defined
inductive predicates

,
ℰ𝑣𝑒𝑛(0)

ℰ𝑣𝑒𝑛(𝑡) ,
𝒪𝑑𝑑(succ · 𝑡)

𝒪𝑑𝑑(𝑡) ,
ℰ𝑣𝑒𝑛(succ · 𝑡) (5.6)

can instead be defined by [Blanchette 2013]

ℰ𝑣𝑒𝑛(𝑡) def= ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inl 𝑡),
𝒪𝑑𝑑(𝑡) def= ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inr 𝑡),

where inl and inr would be the combinators for disjoint union, and ℰ𝑣𝑒𝑛𝒪𝑑𝑑
is the inductive predicate

,
ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inl 0)

ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inl 𝑡) ,
ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inr(succ · 𝑡))

ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inr 𝑡) ,
ℰ𝑣𝑒𝑛𝒪𝑑𝑑(inl(succ · 𝑡))

whose interpretation on D ⊕ D is valid given that its associated formula
Ψ(𝑋, 𝑥) is 𝑋-positive.

Given Agda’s support for mutual definitions, we formalise the inductive
predicates in (5.6) by two mutually inductive families.

data Even : D → Set
data Odd : D → Set
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data Even where
ezero : Even zero
esucc : ∀ {n} → Odd n → Even (succ₁ n)

data Odd where
osucc : ∀ {n} → Even n → Odd (succ₁ n).

5.4 Alternative Formalisation of Inductive
Predicates

Before describing the addition of co-inductive predicates to FOTC, we show
an alternative formalisation in Agda of the inductive predicates based on the
axioms (5.2). This formalisation will be the base for our formalisation of the
co-inductive predicates within the realm of FOL.

We do not have a general 𝜇-operator (a second-order construct) in FOTC.
Instead, given an 𝑋-positive formula Ψ(𝑋, 𝑥), we can introduce a new 𝑛-ary
predicate symbol 𝒫, with introduction and elimination rules corresponding
to the fact that the meaning of 𝒫 is 𝜇𝑋.Ψ(𝑋, 𝑥).

In the following example, we show an alternative formalisation of the
inductive predicate 𝒩, which is used for representing total and finite natural
numbers.

Example 5.19. Given the 𝑋-positive formula

Ψ(𝑋, 𝑥) def= 𝑥 = 0 ∨ (∃𝑥′. 𝑥 = succ · 𝑥′ ∧ 𝑋(𝑥′)), (5.7)

we could implement the unary inductive predicate 𝒩 (given by the intro-
duction and elimination rules (4.4)) without using Agda’s data constructor.
The implementation represents that 𝒩 is 𝜇𝑋.Ψ(𝑋, 𝑥) and it is given by
postulating the following constants: the predicate symbol N, the introduc-
tion rule N-in, that is, N is a pre-fixed point of (5.7), and the elimination
rule N-ind', that is, N is the least pre-fixed point of (5.7).

postulate
N : D → Set

N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n

N-ind' : (A : D → Set) →
(∀ {n} → n ≡ zero ∨ (5.8)

(∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) →
∀ {n} → N n → A n.

In the following example, we show that the implementation of the in-
ductive predicate 𝒩 using the least-fixed point approach presented above
and the inductive approach presented in Section 5.1 are equivalents.
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Example 5.20. Given the least-fixed point implementation of 𝒩, that is,
axioms (5.8), we can define the data constructors nzero and nsucc given
by (4.12), and the induction principle N-ind given by (4.13).

nzero : N zero
nzero = N-in (inj₁ refl)

nsucc : ∀ {n} → N n → N (succ₁ n)
nsucc Nn = N-in (inj₂ (_ , refl , Nn))

N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ₁ n)) →
∀ {n} → N n → A n

N-ind A A0 h = N-ind' A h'
where
h' : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ A m') → A m
h' (inj₁ m≡0) = subst A (sym m≡0) A0
h' (inj₂ (m' , prf , Am')) = subst A (sym prf) (h Am').

Now, given the inductive implementation of 𝒩, that is, the inductive
family (4.12) and the induction principle (4.13), we can define the ax-
ioms (5.8).

N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n
N-in {n} h = case prf₁ prf₂ h

where
prf₁ : n ≡ zero → N n
prf₁ n≡0 = subst N (sym n≡0) nzero

prf₂ : ∃[ n' ] n ≡ succ₁ n' ∧ N n' → N n
prf₂ (n' , prf , Nn') = subst N (sym prf) (nsucc Nn')

N-ind' :
(A : D → Set) →
(∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) →
∀ {n} → N n → A n

N-ind' A h = N-ind A h₁ h₂
where
h₁ : A zero
h₁ = h (inj₁ refl)

h₂ : ∀ {m} → A m → A (succ₁ m)
h₂ {m} Am = h (inj₂ (m , refl , Am)).
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Remark 5.21. We could represent all the inductively defined predicates
following the least-fixed point approach shown in Example 5.19, but to get
the most out of Agda’s support for inductive types, we instead use Agda’s
data construct.

5.5 Adding Co-Inductive Predicates
We shall use co-inductively defined predicates for reasoning about func-
tional programs with total and potentially infinite elements (see, for ex-
ample, Gordon [1995] and Gibbons and Hutton [2005]). For the definition
of co-inductive predicates, Dybjer and Sander [1989] define a 𝜈-operator by
dualisation of the 𝜇-operator. Let Ψ(𝑋, 𝑥) be an 𝑋-positive formula, then
we can form the formula 𝜈𝑋.Ψ(𝑋, 𝑥) representing an 𝑛-ary co-inductive pre-
dicate 𝒫. From the axioms for the 𝜇-operator, they derive two properties for
the 𝜈-operator:

𝜈𝑋.Ψ(𝑋, 𝑥) is a post-fixed point of Ψ(𝑋, 𝑥), (5.9a)
𝜈𝑋.Ψ(𝑋, 𝑥) is greatest among all post-fixed points of Ψ(𝑋, 𝑥). (5.9b)

The properties (5.9a) and (5.9b) correspond to the unfolding rule and the co-
induction rule for the co-inductive predicate 𝒫, respectively. These proper-
ties together express that the formula 𝜈𝑋.Ψ(𝑋, 𝑥) is the greatest fixed-point
of Ψ(𝑋, 𝑥). In this case, we shall introduce a new 𝑛-ary predicate symbol 𝒫,
with unfolding and co-induction rules corresponding to the fact that the
meaning of 𝒫 is 𝜈𝑋.Ψ(𝑋, 𝑥).

In the following example, we show the implementation of a co-inductive
predicate in FOTC.

Example 5.22. As an example of a co-inductive definition, we take the
natural numbers with the number ∞ = succ · ∞—the fixed-point of the
successor function obtained by lazy evaluation. From (5.7), we implement a
co-inductive predicate 𝒞𝑜𝑛𝑎𝑡(𝑡) representing that 𝑡 is a total and potentially
infinite natural number.

postulate
Conat : D → Set

Conat-out : ∀ {n} → Conat n →
n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n')

Conat-coind : (A : D → Set) →
(∀ {n} → A n →

n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) →
∀ {n} → A n → Conat n.
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The constant Conat defines the unary predicate. The constant Conat-out
implements the unfolding rule, that is, the predicate Conat is a post-fixed
point of (5.7), and the constant Conat-coind implements the co-induction
rule, that is, the predicate Conat is the greatest post-fixed point of (5.7).

Remark 5.23. Unlike the implementation of the inductive predicates, we
shall not use Agda’s co-inductive operators for the implementation of the
co-inductive predicates of FOTC because they are still very experimental.

In the following example, we illustrate the use of the co-induction rule
of the co-inductive predicate 𝒞𝑜𝑛𝑎𝑡.
Example 5.24. We want to prove that the number ∞ is a total and
potentially infinite natural number. First, we add the recursive equation
∞ ≡ succ₁ ∞, which implements that ∞ is a fixed-point of the successor func-
tion. To prove the intended property, we instantiate Conat-coind with the
predicate λ n → n ≡ ∞.

postulate
∞ : D
∞-eq : ∞ ≡ succ₁ ∞

∞-Conat : Conat ∞
∞-Conat = Conat-coind A h refl

where
A : D → Set
A n = n ≡ ∞

h : ∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')
h An = inj₂ (∞ , trans An ∞-eq , refl).

In FOTC, we can nicely mix inductive and co-inductive notions. In the
following example, we show this.

Example 5.25. The proof that every total and finite natural number is a
co-inductive natural number is given by

N→Conat : ∀ {n} → N n → Conat n
N→Conat Nn = Conat-coind N h Nn
where
h : ∀ {m} → N m → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ N m')
h nzero = inj₁ refl
h (nsucc {m} Nm) = inj₂ (m , refl , Nm).

The co-induction rule Conat-coind is instantiated with the inductive predic-
ate N for total and finite natural numbers, and the hypothesis required is
proved by pattern matching on a proof that the number n is a total and
finite natural number.
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Before showing additional examples of co-inductively defined predic-
ates in FOTC, we discuss the consistency of FOTC when working with co-
inductive predicates. The 𝑛-ary co-inductively defined predicates 𝒫 repres-
ented by formulae 𝜈𝑋.Ψ(𝑋, 𝑥) can be interpreted as greatest fixed-points of
monotone operators on subsets of the domain model D induced by the for-
mulae Ψ(𝑋, 𝑥). Again, the monotonicity of these operators is a consequence
of the 𝑋-positivity of the formulae Ψ(𝑋, 𝑥), and therefore it will also be the
condition required to add co-inductively defined predicates.

As we did in § 4.2, we shall use the set-theoretic notion of rule set
to interpret the co-inductive predicates on the domain model D, based on
Aczel’s definition of the dual of an inductive definition [Aczel 1977a].

Let Φ be a rule set on 𝑈 . A set 𝐴 is Φ-dense if for every 𝑥 ∈ 𝐴 there is a
set 𝑋 ⊆ 𝐴 such that 〈𝑋, 𝑥〉 ∈ Φ. The co-inductively defined set by Φ is the
largest Φ-dense set defined by

𝐾(Φ) = ⋃{𝐴 ⊆ 𝑈 ∣ 𝐴 is Φ-dense}. (5.10)

Example 5.26. Given that introduction rules for the predicates 𝒩 and
𝒞𝑜𝑛𝑎𝑡 are the same, we have that the rule set Φ𝒞𝑜𝑛𝑎𝑡 on D associated with
the predicate 𝒞𝑜𝑛𝑎𝑡 is the rule set Φ𝒩 (Example 4.5). If we add ∞ to D,
the interpretation of co-inductive predicate 𝒞𝑜𝑛𝑎𝑡 on D is given by

Conat = 𝐾(Φ𝒞𝑜𝑛𝑎𝑡)
= N ∪ ∞.

Remark 5.27. The co-inductively defined sets by a rule set can also be
defined as greatest fixed-points of monotone operators. A rule set Φ is finite
in the conclusions, if for each 𝑥, the set {𝑋 ∣ 〈𝑋, 𝑥〉 ∈ Φ} is finite, that is,
there is only a finite number of rules whose conclusion is 𝑥. Let be Φ a rule
set on 𝑈 finite in the conclusions, and let Φ̂ ∶ Pow(𝑈) → Pow(𝑈) be the
monotone operator induced by Φ. The co-inductively defined set by Φ is the
greatest fixed-point of Φ̂ defined by [Sangiorgi 2012]

𝐾(Φ) = ⋂
𝑛∈𝜔

Φ̂𝑛(𝑈). (5.11)

Now, we show additional examples of co-inductively defined predicates in
FOTC. In the following example, we implement a new co-inductive predicate
for total and potentially infinite list of elements.

Example 5.28. From the 𝑋-positive formula

Ψ(𝑋, 𝑥𝑠) def= ∃𝑥′ 𝑥𝑠′. 𝑥𝑠 = cons · 𝑥′ · 𝑥𝑠′ ∧ 𝑋(𝑥𝑠′), (5.12)

we implement the co-inductive predicate 𝒮𝑡𝑟𝑒𝑎𝑚(𝑡𝑠) representing that 𝑡𝑠 is
a stream, that is, a total and potentially infinite list of elements.
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postulate
Stream : D → Set

Stream-out : ∀ {xs} → Stream xs →
∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs'

Stream-coind : (A : D → Set) →
(∀ {xs} → A xs →

∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') →
∀ {xs} → A xs → Stream xs.

The constant Stream defines the unary predicate, the constant Stream-out
implements the unfolding rule, that is, the predicate Stream is a post-fixed
point of (5.12), and the constant Stream-coind implements the co-induction
rule, that is, the predicate Stream is the greatest post-fixed point of (5.12).

In the following example, we show how to use the co-inductive predicate
𝒮𝑡𝑟𝑒𝑎𝑚 for proving a property.

Example 5.29. Using the unfolding rule Stream-out, we can prove for ex-
ample that if x ∷ xs is a stream, then xs is also a stream.

Given a proof that the function _∷_ is injective

∷-injective : ∀ {x y xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y ∧ xs ≡ ys

the proof of the desired property is given by

∷-Stream : ∀ {x xs} → Stream (x ∷ xs) → Stream xs
∷-Stream {x} {xs} h = ∷-Stream-helper (Stream-out h)

where
∷-Stream-helper :

∃[ x' ] ∃[ xs' ] x ∷ xs ≡ x' ∷ xs' ∧ Stream xs' → Stream xs
∷-Stream-helper (x' , xs' , prf , Sxs') =

subst Stream (sym (∧-proj₂ (∷-injective prf))) Sxs'.

We have h : Stream (x ∷ xs). Then using the auxiliary function
∷-Stream-helper, we pattern match on the intermediate values given from
Stream-out h: x' and xs' of type D, prf of type x ∷ xs ≡ x' ∷ xs' and Sxs'
of type Stream xs'. From prf and Sxs', given the injectivity of _∷_, we can
prove Stream xs.

Suitable notions of equality between total and potentially infinite terms
can be defined as binary co-inductive relations. In the following examples,
we show the definition and the use of one of these notions of equality, re-
spectively.
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Example 5.30. The equality of total and potentially infinite numbers
(which includes ∞) can be defined as the greatest fixed-point of the fol-
lowing 𝑋-positive formula:

Ψ(𝑋, 𝑥, 𝑦) def= (𝑥 = 0∧𝑦 = 0)∨(∃𝑥′ 𝑦′. 𝑥 = succ ·𝑥′ ∧𝑦 = succ ·𝑦′ ∧𝑋(𝑥′, 𝑦′)).

This can be formalised in Agda using the following postulates, which express
the post-fixed point and the greatest post-fixed point properties:

postulate
_≈N_ : D → D → Set

≈N-out :
∀ {m n} → m ≈N n →
m ≡ zero ∧ n ≡ zero

∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ m' ≈N n')

≈N-coind :
(R : D → D → Set) →
(∀ {m n} → R m n →

m ≡ zero ∧ n ≡ zero
∨ (∃[ m' ] ∃[ n' ]

m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n')) →
∀ {m n} → R m n → m ≈N n.

Example 5.31. As a simple example of the use of ≈N, we prove that the
length of a stream is ∞:

streamLength : ∀ {xs} → Stream xs → length xs ≈N ∞.

We use the co-induction rule ≈N-coind for proving this property. Based on
Sander [1992], we define the auxiliary relation

R : D → D → Set
R m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞.

To prove the first hypothesis required by ≈N-coind, we assume R m n for
arbitrary m and n. Hence m = length xs for some xs such that Stream xs
and n = ∞. Moreover, by unfolding Stream xs, we can conclude that there
are x' and xs' of type D such that xs = x' ∷ xs' and Stream xs'. Hence
m = succ₁ (length xs') and n = succ₁ ∞, and therefore m ≈N n holds.

The second hypothesis required by ≈N-coind, that is, R (length xs) ∞
holds as a consequence of the assumption Stream xs.

The Appendix C contains the proof of the streamLength property.
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Chapter 6

Combining Interactive and
Automatic Proofs

The reasoning about programs such as gcd (Example 5.5) in our Agda imple-
mentation of FOTC is at a very low level compared with ordinary reasoning
about programs in Agda when used as a proof assistant for dependent type
theories. For example, judgments of the form n : ℕ (where ℕ is the induct-
ive type of natural numbers defined in § 2.1) are automatically checked
by Agda, whereas propositions of the form N n (where N is the inductive
predicate for total and finite natural numbers implemented in (4.10)) have
to be proved manually by constructing proof terms of type N n. Moreover,
Agda can automatically normalise some terms by using definitional equality,
whereas simplification using the postulated conversion rules for elements in
the universe D of FOTC has to be done manually. However, much of this
low-level reasoning can be done automatically with the help of, for example,
automatic theorem provers for FOL.

By staying strictly within FOL, we shall be able to employ powerful
ATPs for reasoning about functional programs. To this end, we have written
the Apia program, a translator from our Agda representation of first-order
formulae into the TPTP language understood by many ATPs. We have also
extended the Agda system with a new pragma (henceforth, ATP-pragma)
that instructs Agda, via the Apia program, to interact with the theorem
provers by asking them for proofs, giving them hypotheses, and informing
them of new definitions and axioms.

At the moment, we use the ATPs as oracles via the Apia program, that
is, we trust the ATPs when they tell us that a proof exists. Therefore, in
the sequel, when we write about an ‘automatic proof of a formula 𝐴’ or ‘we
automatically prove the formula 𝐴’ this means that the user must: (i) to
add to the Agda program the required ATP-pragmas, (ii) to run the Apia
program on the corresponding Agda file and (iii) to verify that some ATP
could prove the formula 𝐴. As a result of the above steps, the consistency
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of our approach is also user’s responsibility and this consistency also relies
on the correct implementation of the Apia program.

In this chapter, we show how to combine interactive and automatic proofs
when working in FOL for reasoning about programs. In § 6.1, we describe
how to combine Agda with the ATPs. In § 6.2, we show examples in various
first-order theories of our combined proof approach. In § 6.3, we describe
the Apia program, which translates our Agda representation of first-order
formulae into TPTP and it calls the ATPs, and we present some statistics
and conclusions related to the use of ATPs in program verification.

6.1 Combining Agda with Automatic Theorem
Provers

We use the TPTP language as the input language for the ATPs. This lan-
guage is part of the TPTP World: “A well known and established infra-
structure that supports research, development, and deployment of automated
theorem proving systems for classical logics” [Sutcliffe 2010, p. 1].

In TPTP syntax, each problem contains one or more annotated formulae
of the form

fof(name, role, formula), (6.1)

where name identifies the formula within the problem, formula is a FOL-for-
mula and

role ∈ { axiom, definition, hypothesis, conjecture }.

For TPTP, conjectures are the formulae to be proved. Moreover, axioms
are accepted without proofs, as a basis for proving conjectures, hypotheses
are assumed to be true for a particular problem, and they are used like
axioms, and definitions are used to introduce symbols, and they are also
used like axioms [Sutcliffe 2013].

In Fig. 6.1, we show the role of ATPs in our approach. We have exten-
ded the development version of Agda by adding the built-in ATP-pragma
containing information to be used by the ATPs. The ATP-pragma instructs
Agda to add information to an interface file which is generated by Agda after
type-checking a file. In this way, we tell the ATPs, via the Apia program,
that a certain formula is a conjecture, an axiom, a hypothesis, or that a
certain constant is a definition.

Using the ATP-pragma, we tell the ATPs that the formulae A, B and C
are axioms by

{-# ATP axiom A #-}
{-# ATP axiom B #-}
{-# ATP axiom C #-}.
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Agda file + ATP-pragmas + [logical schemata options]

Modified version of Agda

TPTP translationApia

calls the ATPsE Vampire

MetisEquinox SPASS

(Un)proven conjecture

Agda interface file

TPTP formula

Fig. 6.1: Combining Agda with ATPs.

We can also use the alternative syntax

{-# ATP axiom A B C #-}.

As we show later, we shall tell the ATPs that inductive data type con-
structors, conversion rules and equations defining (recursive) functions are
ATP axioms.

The ATP-pragma syntax for the TPTP hypotheses and definitions is
obtained by replacing the word ‘axiom’ with the words ‘hint’ or ‘definition’,
respectively. We can also use the above alternative syntax with hypotheses
and definitions.

To automatically prove a formula A, we shall postulate it and add the
ATP-pragma

{-# ATP prove A #-}

that instructs the ATPs to prove the conjecture A.
After type-checking the Agda file with the conjecture(s), we run the Apia

program, which first translates all axioms, hypotheses, definitions, and con-
jectures in the generated interface file into the TPTP language, and then
tries to prove the conjectures by calling simultaneously the ATPs. At the
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moment, the ATPs that can be used are shown in Fig. 6.1: The E the-
orem prover [Schulz 2013], Equinox [Claessen 2011b], Metis [Hurd 2003],
SPASS [Weidenbach et al. 2009] or Vampire [Kovác and Voronkov 2013].
The user can choose which ATP(s) to use from the previous list. The user
can also use the default ATPs called by the Apia program which are E,
Equinox and Vampire.

For example, to automatically prove the commutativity of disjunction
using the default ATPs, we first write

postulate
A B : Set
∨-comm : A ∨ B → B ∨ A

{-# ATP prove ∨-comm #-}

in an Agda file called CommDisjunction.agda. Next, we run the command
$ apia CommDisjunction.agda

and in the terminal, we get information about where the TPTP file corres-
ponding to the property to be proved is located, which property is being
proved, and which ATP was able to prove the property first, if any.

Proving the conjecture in /tmp/CommDisjunction/10-8744-comm.tptp
Vampire 0.6 (revision 903) proved the conjecture

In this case, the TPTP file is created in the directory /tmp/CommDisjunction/,
the property v-comm is renamed 10-8744-comm, where 10 is the line number
where the property is postulated and 8744 is the decimal code point of the
Unicode symbol ∨, and Vampire was the first ATP to prove the conjecture.

If no ATP can prove a particular conjecture within four minutes (default
time), the Apia program informs us about it.

If we want to only use one or more particular ATPs, we can use the
--atp command-line option. For example, to use, say, Equinox and Metis in
the previous example, we should run the following command instead:

$ apia --atp=equinox --atp=metis CommDisjunction.agda

6.2 Applying the Combined Proofs Approach
To illustrate the application of our combined proofs approach, we shall show
how to prove some simples examples on different first-orders theories includ-
ing FOTC. These examples do not present a major difficulty to be directly
formalised in dependent type theory. In Chapter 7, we shall show more
complicated examples whose formalisation in dependent type theory is not
trivial or, to the best of our knowledge, not even possible.

Remark 6.1. All the automatic proofs were tested on a 2.70 GHz personal
computer with six GB of RAM using a timeout of four minutes.
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6.2.1 First-Order Logic
We start by showing how to use the ATPs when proving properties in the
context of FOL.
Logical constants. In our combined proof approach, there is no need to tell
the ATPs about the logical constants used in our Agda formalisation of FOL
(see Fig. 3.1) by means of the ATP-pragma, because the ATPs implement
them. It is also unnecessary to tell the ATPs about the rules of the pro-
positional equality because the equality of the ATPs is reflexive, symmetric,
transitive and satisfies the substitutivity property.
Pure first-order logic. For pure First-Order Logic—FOL without identity
and where the only terms are variables [Kleene 1952]—all the theorems
tested were automatically proved.
Classical logic. As mentioned in § 5.1, the ATPs in Fig. 6.1 implement
classical logic. For example, we can automatically prove the principle of the
excluded middle pem (postulated in Fig. 3.1) or the (equivalent) principle of
indirect proof ¬-elim.

postulate pem : ∀ {A} → A ∨ ¬ A
{-# ATP prove pem #-}

postulate ¬-elim : ∀ {A} → (¬ A → ⊥) → A
{-# ATP prove ¬-elim #-}.

Nonempty domain. As mentioned in remark 3.10, the domain of quanti-
fication in FOL is non-empty, which is implemented by the ATPs in Fig. 6.1.
For example, Theorem 3.7 is automatically proved without the need of
adding an element to the domain of quantification.

postulate
A : D → Set
∀→∃ : (∀ x → A x) → ∃ A

{-# ATP prove ∀→∃ #-}.

6.2.2 First-Order Theories

6.2.2.1 Automatic Proofs

As for the proofs of pure first-order logic, some proofs in first-order theories
are completely automatic when using the ATPs. In the following example,
we show this.
Example 6.2. The three theorems of group theory which we proved inter-
actively in § 3.3.1 can now be automatically proved by the ATPs.

We start by using the ATP-pragma to inform the ATPs about the axioms
of group theory defined in (3.8).
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{-# ATP axiom assoc leftIdentity leftInverse #-}.

Using the ATP-pragma, we tell the ATPs to prove the theorems
rightIdentityUnique and leftCancellation in Examples 3.14 and 3.15, re-
spectively.

postulate rightIdentityUnique : ∀ r → (∀ a → a · r ≡ a) → r ≡ ε
{-# ATP prove rightIdentityUnique #-}

postulate leftCancellation : ∀ {a b c} → a · b ≡ a · c → b ≡ c
{-# ATP prove leftCancellation #-}.

For the automatic proof of the commutatorInverse theorem in
Example 3.16, we use the ATP-pragma to inform the ATPs about the com-
mutator of two elements of a group is an ATP definition.

{-# ATP definition [_,_] #-}.

Now, we avoid the tedious proof steps of equational reasoning required
for the interactive proof of the theorem commutatorInverse by telling the
ATPs that prove the theorem.

postulate commutatorInverse : ∀ a b → [ a , b ] · [ b , a ] ≡ ε
{-# ATP prove commutatorInverse #-}.

6.2.2.2 Combined Proofs

To prove some first-order theorems, we actually need to combine interactive
and automatic reasoning. This approach is required when the proof of a
theorem requires: (i) a chain of equational reasoning steps which cannot be
proved by the ATPs or (ii) an instance of a higher-order logical schemata,
such as the axiom of induction of Peano arithmetic, the induction principles
associated to the inductive predicates or the co-induction rules of the co-
inductive predicates.

In what follow, we present examples of the two cases mentioned above.

Example 6.3. Given the first-order theory of a left and right distributive
binary operation, the task B of Stanovský [2008] is a fairly small example
of a proof which requires a combination of interactive and automatic proof
steps.

Let us consider FOL as in Fig. 3.1. For the formalisation of the first-order
theory used in this example, we postulate a left-associative binary operation
and two distributive axioms.
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infixl 10 _·_
postulate

_·_ : D → D → D
leftDistributive : ∀ x y z → x · (y · z) ≡ (x · y) · (x · z)
rightDistributive : ∀ x y z → (x · y) · z ≡ (x · z) · (y · z)

{-# ATP axiom leftDistributive rightDistributive #-}.

The proof of the following theorem is Stanovský’s task B:

prop₂ : ∀ u x y z →
(x · y · (z · u)) ·

(( x · y · ( z · u)) · (x · z · (y · u))) ≡
x · z · (y · u).

The paper proof of task B requires 35 very simple equational reasoning
steps. Our interactive proof of task B is almost a literal translation from
Stanovský’s proof. However, unlike the paper proof, our proof is considerably
more tedious because we need to formalise the justification of every step in
the equational reasoning (often omitted in the paper proofs).

To automatically prove the theorem prop₂ using our approach, we first
postulate it and add the ATP-pragma

{-# ATP prove prop₂ #-}.

Let TaskB.agda be the file which contains the postulated theorem prop₂
and the above ATP-pragma. Running the command

$ apia --atp=e --atp=equinox --atp=metis --atp=spass --atp=vampire \
TaskB.agda

in the terminal we get the following information:

Proving the conjecture in /tmp/TaskB/16-prop2.tptp
Vampire 0.6 (revision 903) *did not* prove the conjecture
SPASS *did not* prove the conjecture
Equinox, version 5.0alpha, 2010-06-29 *did not* prove the conjecture
metis 2.3 (release 20120927) *did not* prove the conjecture
E 1.8-001 Gopaldhara Jun Chiabari *did not* prove the conjecture
apia: the ATP(s) did not prove the conjecture in /TaskB/16-prop2.tptp

That is, none of the ATPs in Fig. 6.1 could prove the property.
Instead, we combine interactive and automatic proof steps in order to

prove the theorem. Using this approach, we could reduce the 35 original proof
steps to 9 proof steps where each required justification was automatically
proved by the ATPs.

prop₂ : ∀ u x y z →
(x · y · (z · u)) ·
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(( x · y · ( z · u)) · (x · z · (y · u))) ≡
x · z · (y · u)

prop₂ u x y z =
xy·zu · (xy·zu · xz·yu)

≡⟨ j₁₋₅ ⟩
xy·zu · (xz · xu·yu · (y·zu · xz·yu))

≡⟨ j₅₋₉ ⟩
xy·zu · (xz · xyu · (yxz · yu))

≡⟨ j₉₋₁₄ ⟩
xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu))

≡⟨ j₁₄₋₂₀ ⟩
xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu)))

≡⟨ j₂₀₋₂₃ ⟩
xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu)))

≡⟨ j₂₃₋₂₅ ⟩
(xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu))

≡⟨ j₂₅₋₃₀ ⟩
xz · xyu · (y·zy · xzu)

≡⟨ j₃₀₋₃₅ ⟩
xz·yu ∎

In the above proof, we omitted the postulated justifications j₁₋₅, …, j₃₀₋₃₅,
which were automatically proved, and their ATP-pragmas. Moreover, for
any u, x, y and z, we use the following definitions:

xy xyz x·yz ux·yz : D
xy = x · y
xyz = x · y · z
x·yz = x · (y · z)
ux·yz = u · x · (y · z)
{-# ATP definition xy xyz x·yz ux·yz #-}.

In the following example, we illustrate the use of combined interactive
and automatic reasoning when the proof requires the instantiation of an
induction principle.

Example 6.4. To automate the proof of the commutativity of addition
in PA, we start by using the ATP-pragma to inform the ATPs about the
axioms PA₁ to PA₆ defined in (3.9). Note that we do not inform the ATPs
about the induction principle ℕ-ind defined in (3.10) because the ATPs do
not handle inductive proofs. In our combined approach, we interactively use
the induction principle ℕ-ind, properly instantiated for the property we want
to prove, and we use the ATPs to automatically prove the required base and
step cases of the induction.
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+-comm : ∀ m n → m + n ≡ n + m
+-comm m n = ℕ-ind A A0 is m

where
A : M → Set
A i = i + n ≡ n + i
{-# ATP definition A #-}

postulate A0 : A zero
{-# ATP prove A0 +-rightIdentity #-}

postulate is : ∀ i → A i → A (succ i)
{-# ATP prove is x+Sy≡S[x+y] #-}.

The proof requires the auxiliary properties

+-rightIdentity : ∀ n → n + zero ≡ n
x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n)

in order to prove the base and step cases, respectively. These properties are
used as local hypotheses in the ATP-pragmas by giving their names after
the name of the conjecture to be proved.

Instead of using properties as local hypotheses to the conjectures, we
can use them as global hypotheses. In this way, we avoid to explicitly pass
these hypotheses to every conjecture that requires them. In the following
example, we illustrate this.

Example 6.5. For the combined proof of the commutativity of addition
in Example 6.4, we tell the ATPs that the properties +-rightIdentity and
x+Sy≡S[x+y] are ATP hypotheses by

{-# ATP hint +-rightIdentity x+Sy≡S[x+y] #-}

and then we can rewrite the ATP-pragmas associated to the conjectures A0
and is by

{-# ATP prove A0 #-}
{-# ATP prove is #-}.

Since in the TPTP semantics the global hypotheses are used as axioms,
and since the ATPs are very sensitive to the number of axioms in a TPTP
problem, we do not use global hypotheses in our formalisation of first-order
theories to avoid unnecessarily blowing up the ATPs’ search space.
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6.2.3 First-Order Theory of Combinators

6.2.3.1 Automatic Proofs for the Conversion Rules

We start by telling the ATPs that the conversion and discrimination rules
associated with the FOTC-terms

true, false, if, zero, succ, pred and iszero

are ATP axioms.
However, for reasons that will be explained in § 6.3.1, it is more con-

venient for the ATPs to formalise the conversion and discrimination rules
for the above terms using the following terms and function symbols instead
(see convention 4.10):

true, false, if_then_else_, zero, succ₁, pred₁ and iszero₁.

We use then the following conversion and discrimination rules:

postulate
if-true : ∀ t {t'} → if true then t else t' ≡ t
if-false : ∀ {t} t' → if false then t else t' ≡ t'

{-# ATP axiom if-true if-false #-}

postulate
pred-0 : pred₁ zero ≡ zero
pred-S : ∀ n → pred₁ (succ₁ n) ≡ n

{-# ATP axiom pred-0 pred-S #-}

postulate
iszero-0 : iszero₁ zero ≡ true
iszero-S : ∀ n → iszero₁ (succ₁ n) ≡ false

{-# ATP axiom iszero-0 iszero-S #-}

postulate
t≢f : true ≢ false
0≢S : ∀ {n} → zero ≢ succ₁ n

{-# ATP axiom t≢f 0≢S #-}.

Our combined proof approach allows completely automatic proofs for the
conversion rules of the function symbols added by using recursive equations
in FOTC. For each new function symbol added by a recursive equation of
the form (5.1), we inform the ATPs that the equation is an ATP axiom.
An important consequence of this is that the conversion rules for the new
function symbol can be automatically proved.

In what follows, we show a couple of examples where the conversion rules
associated to a new symbol are automatically proved.
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Example 6.6. After telling the ATPs that the equation +-eq defined in
Example 5.3 is an ATP axiom, the conversion rules for addition are auto-
matically proved.

postulate +-0x : ∀ n → zero + n ≡ n
{-# ATP prove +-0x #-}

postulate +-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n)
{-# ATP prove +-Sx #-}.

Example 6.7. In Example 6.6, we use automatic proofs for proofs with
very few equational reasoning steps. However, by telling the ATPs that the
equation gcd-eq defined in Example 5.5 is an ATP axiom, the automatic
proofs of the conversion rules for the gcd algorithm avoid tedious interactive
proofs.

postulate
gcd-00 : gcd zero zero ≡ zero

gcd-S0 : ∀ n → gcd (succ₁ n) zero ≡ succ₁ n

gcd-0S : ∀ n → gcd zero (succ₁ n) ≡ succ₁ n

gcd-S>S : ∀ m n → succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ≡
gcd (succ₁ m ∸ succ₁ n) (succ₁ n)

gcd-S≯S : ∀ m n → succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ≡
gcd (succ₁ m) (succ₁ n ∸ succ₁ m)

{-# ATP prove gcd-00 gcd-S0 gcd-0S gcd-S>S gcd-S≯S #-}.

Finally, when a new function symbol is added by a set of conversion
rules, we tell the ATPs that they are axioms. In the following example, we
illustrate this.

Example 6.8. Given the definitions of addition of natural numbers (see
Example 5.4) and of the concatenation of lists (see Example 5.16), we tell
the ATPs that they are axioms.

{-# ATP axiom +-0x +-Sx #-}
{-# ATP axiom length-[] length-∷ #-}.
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6.2.3.2 Combined Inductive Proofs

The inductively defined predicates of FOTC are formalised as inductive fam-
ilies using Agda’s data constructor and, as already mentioned, we instantiate
their induction principles using Agda’s pattern matching. In our combined
proof approach for inductive proofs, we first inform the ATPs that the in-
ductive data type constructors of the inductive predicates, that is, their
introduction rules, are ATP axioms. In the following example, we illustrate
this.
Example 6.9. We tell the ATPs that the inductive data type constructors
nzero and nsucc of the inductive predicate N for total and finite natural
numbers are ATP axioms as follows:

data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)

{-# ATP axiom nzero nsucc #-}.

In our combined proof approach, we use in general the following meth-
odology for inductive proofs: (i) we instruct Agda to do pattern matching
on the argument(s) that satisfy the inductive predicate and (ii) we try to
automatically prove the base and step cases required by the induction prin-
ciple.

In the following example, we show a combined inductive proof using the
above methodology.
Example 6.10. The proof that the addition of total and finite natural
numbers returns a total and finite natural number (interactively proved in
Example 5.3) using our combined approach is given by

+-N : ∀ {m n} → N m → N n → N (m + n)

+-N {n = n} nzero Nn = prf
where postulate prf : N (zero + n)

{-# ATP prove prf #-}

+-N {n = n} (nsucc {m} Nm) Nn = prf (+-N Nm Nn)
where postulate prf : N (m + n) → N (succ₁ m + n)

{-# ATP prove prf #-}.

Here, we do pattern matching on the first explicit argument of +-N, and
we automatically prove the base and step cases required by the proof.

Given that in our representation of higher-order functions in FOTC we
stay strictly within FOL, we can also use our combined proof approach to
prove some properties of such functions.

In the following example, we show a combined proof using the first-order
version of the map function.
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Example 6.11. To prove the map-++ property (interactively proved in Ex-
ample 5.17), we first tell the ATPs that the inductive data type constructors
lnil and lcons of the inductive predicate List for total and finite lists (see
Example 5.14), the conversions rules ++-[] and ++-∷ for the concatenation
of lists (see Example 5.16), and the conversion rules map-[] and map-∷ for
the map function (see Example 5.17) are ATP axioms.

To prove the property, we do pattern matching on its second explicit
argument, and then we automatically prove the base and step cases required
by the proof.

map-++ : ∀ f {xs} → List xs → ∀ ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys

map-++ f lnil ys = prf
where postulate prf : map f ([] ++ ys) ≡ map f [] ++ map f ys

{-# ATP prove prf #-}

map-++ f (lcons x {xs} Lxs) ys = prf (map-++ f Lxs ys)
where
postulate

prf : map f (xs ++ ys) ≡ map f xs ++ map f ys →
map f ((x ∷ xs) ++ ys) ≡ map f (x ∷ xs) ++ map f ys

{-# ATP prove prf #-}

6.2.3.3 Combined Co-Inductive Proofs

The co-inductively defined predicates of FOTC are formalised by postulating
their unfolding and co-induction rules. In our combined proof approach for
co-inductive proofs, we first inform the ATPs that the unfolding rule of
the co-inductive predicate is an ATP axiom. In the following example, we
illustrate this.

Example 6.12. We tell the ATPs that the unfolding rule Stream-out of
the co-inductive predicate Stream for total and potentially infinite list of
elements (see Example 5.28) is an ATP axiom as follows:

postulate
Stream-out : ∀ {xs} → Stream xs →

∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs'
{-# ATP axiom Stream-out #-}.

In our combined proof approach, we use in general the following method-
ology for co-inductive proofs: (i) we interactively instantiate the co-induction
rule and (ii) we automatically prove the hypotheses required by the co-
induction rule.

In the following example, we show a combined co-inductive proof which
only requires the step (i) of the above methodology.
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Example 6.13. To prove that if x ∷ xs is stream, then xs is also a stream
(interactively proved in Example 5.29), it is only required to inform the
ATPs that the unfolding rule Stream-out is an ATP axiom.

postulate ∷-Stream : ∀ {x xs} → Stream (x ∷ xs) → Stream xs
{-# ATP prove ∷-Stream #-}.

In the following two examples, we show two combined co-inductive proofs
which require both steps of the above methodology.

Example 6.14. To prove that the number ∞ is a total and possibly infinite
natural number (interactively proved in Example 5.24), we interactively in-
stantiate the co-induction rule Conat-coind with the predicate λ n → n ≡ ∞
using an ATP definition, and we automatically prove the required hypo-
thesis.

∞-Conat : Conat ∞
∞-Conat = Conat-coind A h refl

where
A : D → Set
A n = n ≡ ∞
{-# ATP definition A #-}

postulate
h : ∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')

{-# ATP prove h #-}.

Example 6.15. To prove that the length of a stream is ∞ (interactively
proved in Example 5.31), we interactively instance the co-induction rule
≈N-coind with the relation R. Then, we tell the ATPs that this relation is an
ATP definition, and we automatically prove the two hypotheses required by
the co-induction principle ≈N-coind.

streamLength : ∀ {xs} → Stream xs → length xs ≈N ∞
streamLength {xs} Sxs = ≈N-coind R h₁ h₂
where
R : D → D → Set
R m n = ∃[ xs ] m ≡ length xs ∧ n ≡ ∞ ∧ Stream xs
{-# ATP definition R #-}

postulate
h₁ : ∀ {m n} → R m n →

m ≡ zero ∧ n ≡ zero
∨ (∃[ m' ] ∃[ n' ]

m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n')
{-# ATP prove h₁ #-}
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postulate h₂ : R (length xs) ∞
{-# ATP prove h₂ #-}.

As highlighted in Section 5.5, we can mix inductive and co-inductive
notions in FOTC. This feature is also present when we combine interactive
and automatic proofs. In the following example, we show this.

Example 6.16. To prove that every total and finite natural number is a
total and possibly infinite natural number, we interactively instance the co-
induction rule Conat-coind with the inductive predicate N for total and finite
natural numbers. To prove the hypothesis required by Conat-coind, we do
pattern matching on a proof that the natural number is total and finite, and
we automatically prove the base and step cases require by the proof.

N→Conat : ∀ {n} → N n → Conat n
N→Conat Nn = Conat-coind N h Nn

where
h : ∀ {m} → N m → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ N m')
h nzero = prf

where
postulate prf : zero ≡ zero ∨ (∃[ m' ] zero ≡ succ₁ m' ∧ N m')
{-# ATP prove prf #-}

h (nsucc {m} Nm) = prf
where
postulate

h : succ₁ m ≡ zero ∨ (∃[ m' ] succ₁ m ≡ succ₁ m' ∧ N m')
{-# ATP prove h #-}.

The map-iterate property is a common example to illustrate the use
of co-induction (see, for example, Gordon [1995] and Gibbons and Hutton
[2005]). In the following example, we show a proof of this property in FOTC.

Example 6.17. For our formalisation of the map-iterate property in FOTC,
we use the map function defined in Example 5.17 and we define the iterate
function by the following recursive equation:

postulate
iterate : D → D → D
iterate-eq : ∀ f x → iterate f x ≡ x ∷ iterate f (f · x)

{-# ATP axiom iterate-eq #-}.

The map-iterate property asserts that the potentially infinite lists
map f (iterate f x) and iterate f (f · x) are equals.

Given the bisimulation relation represented by the formula

Ψ(𝑋, 𝑥𝑠, 𝑦𝑠) def=
∃𝑥′ 𝑥𝑠′ 𝑦𝑠′. 𝑥𝑠 = cons · 𝑥′ · 𝑥𝑠′ ∧ 𝑦𝑠 = cons · 𝑥′ · 𝑦𝑠′ ∧ 𝑋(𝑥𝑠′, 𝑦𝑠′),

(6.2)
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the equality between total and potentially infinite lists (streams) is defined as
the greatest fixed-point of (6.2), which we implemented by the co-inductive
bisimilarity relation (see, for example, Dybjer and Sander [1989] and Turner
[1995]) denoted by _≈_.

postulate
_≈_ : D → D → Set

≈-out:
∀ {xs ys} → xs ≈ ys →
∃[ x' ] ∃[ xs' ] ∃[ ys' ]

xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys'

≈-coind :
(B : D → D → Set) →
(∀ {xs ys} → B xs ys →

∃[ x' ] ∃[ xs' ] ∃[ ys' ]
xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys') →

∀ {xs ys} → B xs ys → xs ≈ ys
{-# ATP axiom ≈-out #-}.

To prove the map-iterate property, we use the ≈-coind rule on a par-
ticular bisimulation B [Giménez and Casterán 2007], and the hypotheses
required by ≈-coind are automatically proved by the ATPs.

≈-map-iterate : ∀ f x → map f (iterate f x) ≈ iterate f (f · x)
≈-map-iterate f x = ≈-coind B h₁ h₂
where
B : D → D → Set
B xs ys =

∃[ y ] xs ≡ map f (iterate f y) ∧ ys ≡ iterate f (f · y)
{-# ATP definition B #-}

postulate
h₁ : ∀ {xs ys} → B xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ]

xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys'
{-# ATP prove h₁ #-}

postulate h₂ : B (map f (iterate f x)) (iterate f (f · x))
{-# ATP prove h₂ #-}.

6.3 The Apia Program
The Apia program implements the translation from our Agda representation
of first-order formulae into the TPTP language, that is, the Apia program
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implements the inverse translation from first-order formulae into Agda de-
scribed in (3.3) using the TPTP language as the target language. In addition,
the Apia program calls the ATPs on the above translation.

6.3.1 Translation of Agda Types into TPTP
The source of our translation to TPTP is the Agda internal syntax (3.1) read
from an Agda interface file, as illustrated in Fig. 6.1. Our translation only
uses a subset of the First-Order Form part of the TPTP language represented
by (6.1). For a complete description of the First-Order Form and other parts
of the TPTP language, see Sutcliffe [2009, 2010, 2013].

Notation 6.18. In TPTP syntax, variables start with upper case letters,
and constant, predicate and function symbols start with lower case letters.

Nullary predicates. Nullary predicates in FOL represent propositional
symbols (also called propositional letters), that is, atomic units that repres-
ent concrete propositions (see, for example, van Dalen [2004]). For example,
the translation of the propositional symbol

postulate A : Set

into TPTP is the nullary predicate a.

Non-nullary predicates. Let P : D → Set be a unary predicate. The
translation of P t, where t : D, into TPTP is

p(s),

where s is the translation of the term t.
Let 𝑛 be a positive integer. The most direct way to translate an 𝑛-ary

predicate
P t₁ ⋯ tₙ : Set, with tᵢ : D, (6.3)

into TPTP is
p(s₁,...,sₙ), (6.4)

where sᵢ corresponds to the translation of the term tᵢ. However, we shall
follow Claessen’s [2011a] suggestion for the translation of predicates into
TPTP. As we shall explain below, Claessen’s approach facilitates the trans-
lation of universal quantified propositional functions.

For example, for the translation of a unary predicate

P t : Set, with t : D, (6.5)

we introduce a constant p and a binary predicate symbol appP₁, so

appP₁(p,s)
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represents the predicate (6.5), where s is the translation of the term t.
In general, for the translation of an 𝑛-ary predicate (6.3), we introduce a
constant p and an (𝑛 + 1)-ary predicate symbol appPₙ, so

appPₙ(p,s₁,...,sₙ) (6.6)

represents the predicate (6.3), provided sᵢ is the translation of tᵢ.

Remark 6.19. The --without-predicate-constants command-line option
can be used to translate 𝑛-ary predicates as in (6.4) instead of as in (6.6).

Function terms. Officially, FOTC is a first-order theory with _·_ as the
binary application symbol, and one constant for each function (see Ex-
ample 5.2). However, as we mentioned in conventions 5.1 and 5.13, we some-
times introduce 𝑛-ary function symbols in our implementation of a FOTC
theory. Recall for example the two versions of the constructor nsucc defined
in (4.10) and (4.12), respectively,

nsucc : ∀ {n} → N n → N (succ · n) (6.7)
nsucc : ∀ {n} → N n → N (succ₁ n). (6.8)

When translating the above types to TPTP, the function value succ · n
in (6.7) will be translated to

app(succ,N), (6.9)

where app represents the binary application _·_, while the function value
succ₁ n in (6.8), will be translated to

succ₁(N). (6.10)

Given that (6.10) instead of (6.9) improves the performance of the ATPs
[Claessen 2010a], whenever possible, we use 𝑛-ary functions, such as succ₁,
instead of constant functions, such as succ, when working in FOTC.

In general, for the translation of a function value

f t₁ ⋯ tₙ : D, with tᵢ : D, (6.11)

we introduce a constant f, so

f(s₁,...,sₙ)

represents the function value (6.11), where sᵢ corresponds to the translation
of the term tᵢ.

Remark 6.20. In the theories used by Abel, Coquand and Norell [2005] and
Meng and Paulson [2008], function values can be expressed by currying—
applying a function to fewer than the maximum numbers of arguments.
Therefore, these authors use a binary function symbol @ for the translation
of function values into TPTP. For example, for the translation of
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f t and g t₁ t₂,

they introduce constants f and g, so

@(f,s) and @(@(g,s₁),s₂)

represent the function values f t and g t₁ t₂, respectively, provided s rep-
resents t and sᵢ represent tᵢ. In general, for the translation of (6.11), they
introduce a constant f, so

@(... @(@(f,s₁),s₂),...,sₙ)

represents the function value (6.11).
The --with-function-constants command-line option performs this kind

of translation to allow experimenting with theories where function values can
be expressed by currying.

Propositional functions. In our implementation of FOTC, an 𝑛-ary pro-
positional function

A x₁ ⋯ xₙ : Set, with xᵢ : D (6.12)

has the same type as an 𝑛-ary predicate (6.3), that is, it has the type

D → ⋯ → D⏟⏟⏟⏟⏟
𝑛

→ Set.

Hence, we use the same approach for translating 𝑛-ary predicates as for
translating propositional functions. Therefore, the translation of (6.12) into
TPTP is given by

appPₙ(a,X₁,...,Xₙ), (6.13)

where a is a constant, appPₙ is an (𝑛 + 1)-ary predicate symbol, and Xᵢ
corresponds to the translation of the variable xᵢ.

No logical schemata in TPTP. As mentioned in remark 3.4, it is easy to
represent logical schemata in Agda. Given that TPTP only has syntax for
single formulae, not schematic ones, we have added two pragma options to
our modified version of Agda to automatically prove theorems with schematic
propositional symbols and schematic propositional functions.

• Schematic propositional symbols
While, for example, in

postulate
A B : Set
∨-comm₁ : A ∨ B → B ∨ A

{-# ATP prove ∨-comm₁ #-}
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the formula ∨-comm₁ corresponds to an instance of the commutativity
of disjunction, in

postulate v-comm₂ : {A B : Set} → A ∨ B → B ∨ A
{-# ATP prove ∨-comm₂ #-}

the formula v-comm₂ corresponds to the schema for the commutativity
of disjunction

𝒜 ∨ ℬ ⊃ 𝒜 ∨ ℬ,
where 𝒜 and ℬ range over arbitrary well-formed formulae.
For the translation of schematic formulae like v-comm₂ into TPTP, we
have added the

--schematic-propositional-symbols

Agda pragma option. By using the above pragma in the correspondent
Agda file, the Apia program translates the property v-comm₂ into TPTP
by erasing the quantification on the propositional symbols A B : Set
and representing them with new nullary predicate symbols a and b,
respectively.

• Schematic propositional functions
For the translation of schematic propositional functions, such as the A
in

postulate thm : (A : D → Set) → ∀ {x y} → A x ∨ A y → A y ∨ A x
{-# ATP prove thm #-}

we have added the

--schematic-propositional-functions

Agda pragma option. This pragma tells the Apia program to replace
the constant a in (6.13), associated with the translation of the propos-
itional function A : D → Set, by a universal quantified variable.
As previously mentioned, since 𝑛-ary propositional functions and pre-
dicates have the same type, the above pragma can also be used for the
translation of schematic predicates.

6.3.2 Translation of Functions and Propositional Functions
into TPTP

So far, we have only translated Agda types that represent first-order terms
or formulae. In our implementation of first-order theories, we also need to
translate function definitions (see Examples 6.2 and 6.3) and propositional
function definitions (see Examples 6.4, 6.14, 6.15 and 6.17) into TPTP.
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Since our domain universe is postulated (see § 4.3), the definition of
functions and propositional functions will only have an equation.

Let f be a unary function

f : D → D
f x = RHS
{-# ATP definition f #-}

and A a unary propositional function

A : D → Set
A x = RHS
{-# ATP definition A #-}.

The translations of both the function f and the propositional function A into
TPTP are given, respectively, by

! [X] : f(X) = RHS_t,

! [X] : a(X) <=> RHS_t,

where ! [X] and <=> represent the universal quantification on the variable X
and the bi-conditional in TPTP syntax, respectively, and RHS_t represents
the translation of RHS.

The generalisation to 𝑛-ary functions and propositional functions is not
complicated.

6.3.3 Implementation
Although we shall not describe the full implementation of the Apia program,
here we shall describe some aspects related to it.

Using Agda as a Haskell library. The Agda system is both a Haskell pro-
gram and a Haskell library. Following Norell’s suggestion [Norell 2007a], the
Apia program was implemented in Haskell and it uses Agda as a Haskell
library.

By using Agda as a Haskell library, we have access to many functions
that otherwise would have been necessary to implement; for example, the
functions related to processing the Agda interface files. Unfortunately, the
library’s API is not stable, as stated in the description of the current version
of Agda:1 “Note that the Agda library does not follow the package versioning
policy, because it is not intended to be used by third-party packages”. How-
ever, we have chosen to rely on the current development of Agda because the
Agda team frequently solves performance issues, adds new features conveni-
ent for our formalisation, fix known issues, and so on. Given the constant
modification of Agda and the instability of the library’s API keeping the Apia
program and our modified version of Agda updated is a time-consuming task.

1See http://hackage.haskell.org/package/Agda-2.4.0.2.
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Logical symbols. The logical symbols in Fig. 3.1, that is, ⊥ (falsehood),
∧ (conjunction), _≡_ (propositional equality), and so on, are hard-coded in
the implementation of the Apia program; therefore, they must be used for
implementing the logical constants.

Agda 𝜂-contraction. Agda performs 𝜂-contraction in the internal repres-
entation of their types. For example, the Agda internal representation of the
following types are the same

t : ∀ d → ∃[ e ] d ≡ e
t' : ∀ d → ∃ (_≡_ d).

Since there is no notion of 𝜂-contraction in first-order theories, the Apia
program performs an 𝜂-expansion on the Agda internal types before their
translation to TPTP.

Erasing proof terms. Since there is no notion of proof term in FOL,
it is necessary to erase the proof terms when translating the Agda types
into TPTP.

For example, the following versions of the constructor nsucc of the in-
ductive predicate N defined in (4.12)

nsucc : ∀ {n} → N n → N (succ₁ n)
nsucc' : ∀ {n} → (Nn : N n) → N (succ₁ n)

are valid from Agda’s point of view. However, from FOL’s point of view, the
type of nsucc' is invalid because the proof term Nn is not a FOL concept.
Therefore, our translation of nsucc and nsucc' are the same, that is, we erase
the proof term Nn when translating the type of nsucc' into TPTP.

Where clauses. The definitions and the type declarations inside a where
clause inherit the arguments of function they belong to as proof terms of the
corresponding types. Therefore, it is also necessary to erase the proof terms
in the internal representation of Agda types and definitions inside a where
clause when they are translated into TPTP.

For example, in FOTC, for the combined proof (using the induction prin-
ciple for N)

+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity Nn = N-ind A A0 is Nn
where
A : D → Set
A i = i + zero ≡ i
{-# ATP definition A #-}

postulate A0 : A zero
{-# ATP prove A0 #-}
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postulate is : ∀ {i} → A i → A (succ₁ i)
{-# ATP prove is #-}

the Agda internal representation of A has the same proof term Nn as the
internal representation of

A' : ∀ {n} → (Nn : N n) → D → Set
A' Nn i = i + zero ≡ i

and the Agda internal types of A0 and is have the same proof term Nn that
have the Agda internal types of

postulate
A0' : ∀ {n} → (Nn : N n) → A' Nn zero
is' : ∀ {n} → (Nn : N n) → ∀ {i} → A' Nn i → A' Nn (succ₁ i).

Therefore, for the reason explained before, in the translation of A, A0 and is
into TPTP, it is necessary to erase the proof term Nn.
One TPTP file for each ATP conjecture. To facilitate the interchange
of our generated TPTP files and their testing using the web interface to
ATPs from the TPTP World,2 the Apia program only generates one TPTP
file with all the required information for each ATP conjecture.

Running the program with the --only-files command-line option, the
TPTP files associated to the ATP conjectures are generated without calling
the ATPs.
Imported ATP-pragmas. The use of imported modules is very common
in Agda. For example, all the Agda modules related to the verification of pro-
grams in FOTC import the module FOTC.Base, which contains the conversion
and discrimination rules of FOTC (see § 5.1).

For each ATP conjecture, the Apia program search in conjecture’s top
level module and their imported modules all the required information (ax-
ioms, definitions, and global and local hypotheses) for the conjecture.
Parallel ATPs invocation. The Apia program calls the ATPs chosen by
the user in parallel. Let’s suppose the 𝑖-th ATP was the first ATP to finish. If
this ATP could prove the conjecture, the program kills the running processes
for the other ATPs and reports that the conjecture was proved by the 𝑖-th
ATP. If not, the processes for the remaining ATPs continue running. In the
end, if no ATP could prove the conjecture in a given time, the Apia program
reports it.
Using other automatic theorems provers. Although all the ATPs in
Fig. 6.1 support the TPTP language, their functionality (command-line op-
tions, output, and so on) differs. As a consequence, the invocation of the
ATPs is hard-coded in the Apia program. However, it should not be too dif-
ficult to adapt the program to other ATPs supporting the TPTP language.

2http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP.
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6.3.4 The Automatic Theorem Provers
The overall performance of the ATPs in our formalisation of first-order the-
ories is quite satisfactory. Table 6.1 shows the total number of proven and
unproven theorems using the indicated version of the ATPs for the following
first-order theories: pure first-order logic, the theory of Example 6.3, group
theory, Peano arithmetic and FOTC.

ATP (total theorems: 855) Proven
theorems

Unproven
theorems

% Success

E 1.8-001 Gopaldhara 828 27 97%
Vampire 0.6 (revision 903) 828 27 97%
Equinox 5.0 alpha (2010-06-29) 775 80 91%
SPASS 3.7 755 100 88%
Metis 2.3 (release 2012-09-27) 588 267 69%

Table 6.1: Proven/unproven theorems by the ATPs.

Remark 6.21. We implemented a large set of interactive proofs in FOTC
as part of our experiments, and in neither of those proofs we needed to
use classical logic. In principle, by using ATPs for intuitionistic FOL, we
can avoid using classical logic in FOTC. Unfortunately, the community of
ATPs for intuitionistic logic is small and we did not obtain good results
in our experiments. For example, ileanCoP v1.3beta1 [Otten 2005]—which
is the only ATP for intuitionistic logic that we know supports the TPTP
language—proved only 40% of the theorems in FOTC.

From our experiments in combining interactive and automatic proofs
in our Agda formalisation of FOTC (and others first-order theories too),
we can conclude that the ATPs we use are complementary, that is, where
one ATP succeed, other ATPs fail, and the other way around. For this
reason, the parallel ATPs invocation is an important feature. We have also
realised that the ATPs are very sensitive to the information contained in a
TPTP problem, that is, minor changes to the number of, the order or even
the name of the formulae involved in an automatic proof, can convert a
proven/unproven theorem into an unproven/proven one. This happens due
to arbitrary choices made by all the ATPs [Claessen 2010b].
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Chapter 7

Verification of Lazy
Functional Programs

We have already shown how to use our representation of FOTC and our
computer-assisted approach of combining interactive and automatic proofs
when dealing with simple general recursive programs such as the gcd al-
gorithm or with guarded co-recursive functions such as the map-iterate
property. Here, we illustrate that our approach allows the verification of
mainstream lazy functional programs including those that use nested re-
cursive functions (see § 7.1), higher-order recursive functions (see § 7.2),
functions without a proof of termination (see § 7.3) or unguarded co-recursive
functions (see § 7.4). In § 7.5, we show some figures related to the number
of theorems automatically proved in the previous examples.

It is worth mentioning that none of the examples shown here can be
directly formalised in Agda or Coq because they do not pass the termination
checker.

Notation 7.1. In the examples that we shall show, we use natural literal
numbers (0, 1, 2, …) to simplify the reading; they stand for natural numbers
generated by zero and succ₁.

7.1 McCarthy’s 91-function: A Nested Recursive
Function

In our first example, we work with McCarthy’s 91-function [Manna and
McCarthy 1969] whose Haskell definition is

f91 ∷ Nat → Nat
f91 n = if n > 100 then n - 10 else f91 (f91 (n + 11)).

McCarthy’s 91-function is formalised in FOTC by the following axiom:
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postulate
f₉₁ : D → D
f₉₁-eq : ∀ n → f₉₁ n ≡ if (gt n 100)

then n ∸ 10
else f₉₁ (f₉₁ (n + 11))

{-# ATP axiom f₉₁-eq #-}.

We shall prove some properties of the function f₉₁.

First property. For any n, if n > 100, then f₉₁ n ≡ n ∸ 10.
This property is automatically proved by the ATPs.

postulate f₉₁-x>100 : ∀ n → n > 100 → f₉₁ n ≡ n ∸ 10
{-# ATP prove f₉₁-x>100 #-}.

Second property. For all total and finite natural numbers n, if n ≯ 100,
then f₉₁ n ≡ 91.

The property is formalised by

f₉₁-x≯100 : ∀ {n} → N n → n ≯ 100 → f₉₁ n ≡ 91.

The proof is done using our combined approach with the well-founded in-
duction principle

◁-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m ◁ n → A m) → A n) →
∀ {n} → N n → A n

associated with the well-founded relation

_◁_ : D → D → Set
m ◁ n = 101 ∸ m < 101 ∸ n
{-# ATP definition _◁_ #-}.

Most of the auxiliary properties are proved with the help of the ATPs. We
show only a few of them here.

First, we prove that f₉₁ 100 ≡ 91 by using the ATPs.

postulate f₉₁-100 : f₉₁ 100 ≡ 91
{-# ATP prove f₉₁-100 100+11>100 100+11∸10>100 101≡100+11∸10

91≡100+11∸10∸10 #-}

where the local hypotheses

postulate
100+11>100 : 100 + 11 > 100
100+11∸10>100 : 100 + 11 ∸ 10 > 100
101≡100+11∸10 : 101 ≡ 100 + 11 ∸ 10
91≡100+11∸10∸10 : 91 ≡ 100 + 11 ∸ 10 ∸ 10
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are arithmetic properties, which are also automatically proved.

Remark 7.2. We would want to point out once more that, when using Agda
as a logical framework, even the proofs of simple arithmetical properties like
100 + 11 > 100 have to be done either by manually constructing proof terms
or by the ATPs. This reasoning is at a very low level when compared to the
situation where we use Agda as a proof assistant for dependent type theories
in the usual way, where computing numbers would just be a special case of
the normalisation procedure which is always called during type-checking.

To prove the remaining cases, we use the following property:

postulate
f₉₁-x≯100-helper : ∀ m n → m ≯ 100 →

f₉₁ (m + 11) ≡ n → f₉₁ n ≡ 91 → f₉₁ m ≡ 91
{-# ATP prove f₉₁-x≯100-helper #-}.

Let n < 100. To compute f₉₁ n, we use the equation f₉₁-eq, for which we
first need to compute f₉₁ (n + 11). Which branch of the definition of f₉₁
we use for this computation depends on the value of n.

If 90 ≤ n ≤ 99, then n + 11 > 100, so we apply the true-branch in the
definition of f₉₁ and obtain that the result of f₉₁ (n + 11) is (n + 11) ∸ 10,
and we again apply f₉₁ to this result. We now use the f₉₁-x≯100-helper
property to prove that f₉₁ n returns 91. For example, for the case of n = 98,
we have:

postulate
f₉₁-109 : f₉₁ (98 + 11) ≡ 99
f₉₁-99 : f₉₁ 99 ≡ 91

{-# ATP prove f₉₁-109 98+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-99 f₉₁-x≯100-helper f₉₁-110 f₉₁-100 #-}

where the new local hypotheses

postulate
98+11>100 : [98] + [11] > [100]
f₉₁-110 : f₉₁ (99 + 11) ≡ 100

are automatically proved, and

x+11∸10≡Sx : ∀ {n} → N n → n + 11 ∸ 10 ≡ succ₁ n

is proved using our combined approach.
On the other hand, if n ≤ 89, then n + 11 ≯ 100. Hence, our induct-

ive hypothesis tells us that f₉₁ (n + 11) ≡ 91. Using the f₉₁-x≯100-helper
property on the inductive hypothesis and on the proof that f₉₁ 91 ≡ 91, we
obtain the desired result.
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Third property. The function f₉₁ is total on total and finite natural num-
bers.

Given the following automatic proofs:

postulate
100-N : N 100
91-N : N 91

{-# ATP prove 100-N #-}
{-# ATP prove 91-N #-}

and the property

x>y∨x≯y : ∀ {m n} → N m → N n → m > n ∨ m ≯ n

the proof that the function f₉₁ returns a total and finite natural number is
done by pattern matching on a proof that the argument is a total and finite
natural number, and it uses the first and second properties proved above,
that is, f₉₁-x>100 and f₉₁-x≯100.

f₉₁-N : ∀ {n} → N n → N (f₉₁ n)
f₉₁-N {n} Nn = case prf₁ prf₂ (x>y∨x≯y Nn 100-N)

where
prf₁ : n > 100' → N (f₉₁ n)
prf₁ n>100 = subst N (sym (f₉₁-x>100 n n>100)) (∸-N Nn 10-N)

prf₂ : n ≯ 100' → N (f₉₁ n)
prf₂ n≯100 = subst N (sym (f₉₁-x≯100 Nn n≯100)) 91-N.

In this proof, we use disjunction elimination to establish whether if the nat-
ural number is greater than 100 or not. If so, we use the property f₉₁-x>100;
if not, we use the property f₉₁-x≯100.

Fourth property. For all total and finite natural numbers n

n < f₉₁ n + 11.

The property formalised by

f₉₁-ineq : ∀ {n} → N n → n < f₉₁ n + 11

is also proved by well-founded induction on the relation _◁_ by using the
totality of the function f₉₁ and some properties related to the inequalities.

7.2 Mirror: A Higher-Order Recursive Function
Here, we define the mirror function for general trees, that is, tree structures
with an arbitrary branching factor [Bird and Wadler 1988]. In Haskell, for
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example, general trees can be represented either as two mutually recursive
data types, or as a single type using the list data type. In our FOTC-form-
alisation, we shall follow the first approach.

First, we extend our language with a constructor for trees:

postulate node : D → D → D.

Using the constructors for lists [] and _∷_ (see Example 5.12), we mutually
define predicates for total and finite forests, and for total and finite trees,
that is, trees with a finite numbers of branches.

data Forest : D → Set
data Tree : D → Set

data Forest where
fnil : Forest []
fcons : ∀ {t ts} → Tree t → Forest ts → Forest (t ∷ ts)

{-# ATP axiom fnil fcons #-}

data Tree where
tree : ∀ d {ts} → Forest ts → Tree (node d ts)

{-# ATP axiom tree #-}.

Furthermore, we define the reverse function for lists:

postulate
rev : D → D → D
rev-[] : ∀ ys → rev [] ys ≡ ys
rev-∷ : ∀ x xs ys → rev (x ∷ xs) ys ≡ rev xs (x ∷ ys)

{-# ATP axiom rev-[] rev-∷ #-}

reverse : D → D
reverse xs = rev xs []
{-# ATP definition reverse #-}

and the mirror function for trees:

postulate
mirror : D
mirror-eq : ∀ d ts →

mirror · node d ts ≡
node d (reverse (map mirror ts))

{-# ATP axiom mirror-eq #-}.

Given the previous definitions, we mutually prove the following proper-
ties:
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mirror-involutive : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t
helper : ∀ {ts} → Forest ts →

reverse (map mirror (reverse (map mirror ts))) ≡ ts

that is, we prove that mirror is an involution and we prove that the double
composition of reverse and map mirror is the identity.

To prove the mirror-involutive property, we first do case analysis on
a proof that the tree is total and finite, and then we do case analysis on
its underlying forest; we obtain two cases, depending on whether or not the
forest is empty.

mirror-involutive (tree d fnil) = prf
where postulate prf : mirror · (mirror · node d []) ≡ node d []

{-# ATP prove prf #-}

mirror-involutive (tree d (fcons {t} {ts} Tt Fts)) = prf
where
postulate

prf : mirror · (mirror · node d (t ∷ ts)) ≡ node d (t ∷ ts)
{-# ATP prove prf helper #-}.

The local hypothesis helper follows by induction on forests. Both cases
are automatically proved. The case for the non-empty forest uses the induct-
ive hypothesis, and the following local hypotheses:

reverse-Forest : ∀ {xs} → Forest xs → Forest (reverse xs)

reverse-++ : ∀ {xs ys} → Forest xs → Forest ys →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

reverse-∷ : ∀ {x ys} → Tree x → Forest ys →
reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])

mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t)

which are also proved using our combined approach.
The proofs of reverse-Forest, reverse-++ and reverse-∷ are in Ap-

pendix D. To prove the mirror-Tree property, we need induction principles
that cover the mutual structure of the types Tree and Forest. Based on Coq’s
Scheme command, we define the following mutual induction principles:

Tree-mutual-ind :
{A B : D → Set} →
(∀ d {ts} → Forest ts → B ts → A (node d ts)) →
B [] →
(∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)) →
∀ {t} → Tree t → A t
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Forest-mutual-ind :
{A B : D → Set} →
(∀ d {ts} → Forest ts → B ts → A (node d ts)) →
B [] →
(∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)) →
∀ {ts} → Forest ts → B ts.

Using the Tree-mutual-ind principle, the combined proof of the
mirror-Tree property is given by

mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t)
mirror-Tree = Tree-mutual-ind {A} {B} hA B[] hB

where
A : D → Set
A t = Tree (mirror · t)
{-# ATP definition A #-}

B : D → Set
B ts = Forest (map mirror ts)
{-# ATP definition B #-}

postulate
hA : ∀ d {ts} → Forest ts → B ts → A (node d ts)
B[] : B []
hB : ∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)

{-# ATP prove hA reverse-Forest #-}
{-# ATP prove B[] #-}
{-# ATP prove hB #-}

7.3 Collatz: A Function without a Termination
Proof

The Collatz conjecture, also known as the 3𝑛+1 conjecture (see, for example,
Lagarias [2012]), asserts that for every positive integer, if we iterate the
function

𝐶(𝑛) = {3𝑛 + 1 for 𝑛 odd,
𝑛/2 otherwise,

it eventually would terminate in 1.
For example, if we start the iteration of 𝐶(𝑛) with 7 we obtain the

following values: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2 and 1.
Since the Collatz conjecture remains unsolved, we do not know if the

following Haskell function is total:
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collatz ∷ Nat → Nat
collatz 0 = 1
collatz 1 = 1
collatz n =

if even n then collatz (div n 2) else collatz (3 * n + 1).

Despite of this, we can prove some properties of the function, such as:
for all total and finite natural numbers n, collatz (2^n) ≡ 1.

To formalise the collatz function in FOTC, we start by adding axioms for
defining the div function, and the mutually recursive functions even and odd.

postulate
div : D → D → D
div-x<y : ∀ {m n} → n ≢ 0 → m < n → div m n ≡ 0
div-x≥y : ∀ {m n} → n ≢ 0 → m ≥ n →

div m n ≡ succ₁ (div (m ∸ n) n)
{-# ATP axiom div-x<y div-x≥y #-}.

postulate
even odd : D → D
even-0 : even 0 ≡ true
even-S : ∀ n → even (succ₁ n) ≡ odd n
odd-0 : odd 0 ≡ false
odd-S : ∀ n → odd (succ₁ n) ≡ even n

{-# ATP axiom even-0 even-S odd-0 odd-S #-}.

Now, we can formalise the function by adding the following axioms:

postulate
collatz : D → D
collatz-0 : collatz 0 ≡ 1
collatz-1 : collatz 1 ≡ 1
collatz-even : ∀ {n} → Even (succ₁ (succ₁ n)) →

collatz (succ₁ (succ₁ n)) ≡
collatz (div (succ₁ (succ₁ n)) 2)

collatz-noteven : ∀ {n} → NotEven (succ₁ (succ₁ n)) →
collatz (succ₁ (succ₁ n)) ≡
collatz (3 * (succ₁ (succ₁ n)) + 1)

{-# ATP axiom collatz-0 collatz-1 collatz-even collatz-noteven #-}

where the predicates Even and NotEven are defined by

Even : D → Set
Even n = even n ≡ true
{-# ATP definition Even #-}
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NotEven : D → Set
NotEven n = even n ≡ false
{-# ATP definition NotEven #-}.

To prove that collatz (2^n) ≡ 1 using our combined approach, we first
define the exponential function by the recursive equations

postulate
_^_ : D → D → D
^-0 : ∀ n → n ^ 0 ≡ 1
^-S : ∀ m n → m ^ succ₁ n ≡ m * m ^ n

{-# ATP axiom ^-0 ^-S #-}.

Finally, we do induction on the proof that n is a total and finite natural
number.

collatz-2^x : ∀ {n} → N n → collatz (2 ^ n) ≡ 1

collatz-2^x nzero = prf
where postulate prf : collatz (2 ^ 0) ≡ 1

{-# ATP prove prf #-}

collatz-2^x (nsucc {n} Nn) = prf (collatz-2^x Nn)
where
postulate prf : collatz (2 ^ n) ≡ 1 → collatz (2 ^ succ₁ n) ≡ 1

{-# ATP prove prf helper #-}.

The local hypothesis

helper : ∀ {n} → N n → collatz (2 ^ succ₁ n) ≡ collatz (2 ^ n)

follows by induction on a proof that n is a total and finite natural number.
Both cases are automatically proved.

7.4 Alternating Bit Protocol: A Program Using
Unguarded Co-Recursive Functions

We shall now show how to prove the correctness of a network protocol: the
alternating bit protocol (henceforth, ABP). The purpose of this protocol
is to ensure safe communication over unreliable transmission channels. To
achieve this, the sender tags the message with an alternating bit, which is
checked by the receiver. In the case of proper transmission, the receiver sends
the bit back to the sender as an acknowledgement. Otherwise, the receiver
sends the opposite bit back to signal that the message needs to be resent.

123



7. Verification of Lazy Functional Programs

𝑎𝑔𝑒𝑛𝑡1 𝑎𝑔𝑒𝑛𝑡2
𝑖𝑠 𝑥𝑠 𝑗𝑠

Fig. 7.1: Network of Communicating Process.

We follow Dybjer and Sander [1989], who showed how to represent the
ABP as an (incompletely specified) Kahn network (see, for example, Mac-
Queen [2009]), that is, as a network of communicating mutually recursive
stream transformers. They implemented the ABP in the lazy functional
programming language Miranda [Turner 1986], a precursor of Haskell. In Ap-
pendix E, we rewrote Dybjer and Sander’s program for the ABP in Haskell.
There, we can see that the outH function is not a guarded-by-constructors
co-recursive function (see, for example, Giménez [1995]).

Dybjer and Sander proved the ABP correct in Park’s higher-order 𝜇-cal-
culus, which uses the 𝜇-operator for representing 𝑛-ary inductive predicates
(see § 5.3) and the 𝜈-operator for representing 𝑛-ary co-inductive predicates
(see § 5.5). They implemented the 𝜇-calculus in the Isabelle system, and the
proof was mechanically checked using Isabelle’s tactics.

Here, we show how to modify Dybjer and Sander’s approach so that it fits
within FOTC. Rather than using the 𝜇-operator and the 𝜈-operator (second-
order constructs) for inductive and co-inductive predicates, respectively, we
add new predicate symbols to FOTC with axioms and axiom schemata cor-
responding to the least and greatest fixed-point properties. We have shown
how this can be done in § 5.3 and § 5.5, respectively.

Remark 7.3. Dybjer and Sander [1989] used a higher-order logic in the
formalisation of the ABP. Therefore, we also use a higher-order logic to
formalise the ABP, in which function application is represented by juxta-
position. This logic is used in § 7.4.1, § 7.4.3 and § 7.4.4.

7.4.1 Recursive Definition of Networks of Communicating
Process

Following Kahn’s work, Sander [1992] showed how to define the set of mutu-
ally recursive equations associated to a network of communicating process.

For example, for the network of Fig. 7.1—where the nodes are computing
agents which communicate with each other along the arcs—representing
the messages as streams and the agents as stream transformers, we can
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determine 𝑗𝑠 from 𝑖𝑠 using the following system of equations:

𝑥𝑠 = 𝑓1 𝑖𝑠 𝑗𝑠,
𝑗𝑠 = 𝑓2 𝑥𝑠, (7.1)

where the functions 𝑓1 and 𝑓2 corresponded to 𝑎𝑔𝑒𝑛𝑡1 and 𝑎𝑔𝑒𝑛𝑡2, respect-
ively.

In addition, for the network of Fig. 7.1, there is a network transfer func-
tion 𝑡𝑟𝑎𝑛𝑠 returning the output 𝑗𝑠 from the input 𝑖𝑠 and the functions
computing the input-output of each agent.

𝑗𝑠 = 𝑡𝑟𝑎𝑛𝑠 𝑓1 𝑓2 𝑖𝑠. (7.2)

Now, from (7.1) and (7.2), we get the mutually recursive equations for
the 𝑡𝑟𝑎𝑛𝑠 function by making 𝑥𝑠 into a function ℎ𝑥𝑠, which operates on 𝑓1,
𝑓2 and 𝑖𝑠

∀𝑓1 𝑓2 𝑖𝑠. ℎ𝑥𝑠 𝑓1 𝑓2 𝑖𝑠 = 𝑓1 𝑖𝑠 (𝑡𝑟𝑎𝑛𝑠 𝑓1 𝑓2 𝑖𝑠),
∀𝑓1 𝑓2 𝑖𝑠. 𝑡𝑟𝑎𝑛𝑠 𝑓1 𝑓2 𝑖𝑠 = 𝑓2 (ℎ𝑥𝑠 𝑓1 𝑓2 𝑖𝑠). (7.3)

7.4.2 Non-Deterministic Agents
Kahn networks consist of deterministic agents. At the specification level,
Dybjer and Sander view a non-deterministic agent as an incompletely spe-
cified deterministic one, hence, it is a property of a stream transformer. At
the implementation level, they supply the missing information in the form
of an oracle stream which does not appear at the non-deterministic level and
can be thought of as generated at run time, as highlighted in [Sander 1992].

An example of a non-deterministic agent is an unreliable transmission
channel, where each item is either correctly or erroneously transmitted. In
this case, Dybjer and Sander assume a fairness property which means that
for each time, there is a later time when the unreliable transmission channel
transmits an item correctly.

7.4.3 Specification of Networks of Communicating Process
Dybjer and Sander showed the analogy between the specification of a con-
current system satisfying certain conditions and the specification of a single
functional program.

The specification of a functional program focuses on the input and output
correspondence of the program, that is, the specification can be divided
into an input condition (a logical predicate) 𝑃 and an input-output logical
relation 𝑅. In consequence, a specification has the form

spec 𝑓 def= ∀𝑥. 𝑃(𝑥) ⊃ 𝑅(𝑥, (𝑓 𝑥)),
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where any function 𝑓 that satisfies the above formula satisfies the specifica-
tion.

Can the above notion of specification of a functional program be gener-
alised to concurrent systems? Dybjer and Sander’s [1989, p. 308] answer is
affirmative:

The idea is to model a system as a Kahn-network or, if there are non-
deterministic agents, as an incompletely specified Kahn-network.
Consider a system which satisfies the following criteria:

1. The topology of the system is fixed. Input and output channels
are determined. Streams of messages are communicated between
the agents.

2. Agents are separated into those which we wish to program and
those which are predetermined. The latter kind may be non-
deterministic.

3. The purpose of the system is to realise a certain relation 𝑅
between inputs and outputs, provided that the inputs satisfy cer-
tain conditions 𝑃 , and the predetermined agents satisfy certain
other conditions 𝑄.

Let ⃗⃗⃗ℎ⃗ be the stream transformers associated with the agents (the vector
notation indicates that there may be several agents), let ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠 be the input
streams, and let ⃗⃗⃗ ⃗⃗ ⃗⃗𝑗𝑠 be the output streams. Then, since the topology is
fixed, there are network transfer functions ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡𝑟𝑎𝑛𝑠 (one for each output
channel) such that

⃗⃗⃗ ⃗⃗ ⃗⃗𝑗𝑠 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡𝑟𝑎𝑛𝑠 ⃗⃗⃗ℎ⃗ ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠.
Note that these functions ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡𝑟𝑎𝑛𝑠 are Kahn-network analogues of func-
tion application and that they only depend on the topology of the
network.
By our second assumption, agents (and thus stream transformers)
are separated into those which we wish to program and those which
are predetermined. If we use ⃗⃗⃗𝑓 for the former and ⃗𝑔 for the latter, we
can rewrite the equation:

⃗⃗⃗ ⃗⃗ ⃗⃗𝑗𝑠 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡𝑟𝑎𝑛𝑠 ⃗⃗⃗𝑓 ⃗𝑔 ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠.

By our third assumption, the intended behaviour of the network is
specified by the input conditions 𝑃 , by the conditions 𝑄 on the pre-
determined agents, and by the input-output relation 𝑅. Thus the spe-
cification of our task, that is, to program ⃗⃗⃗𝑓, is

spec ⃗⃗⃗𝑓 = ∀ ⃗𝑔 ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠. (𝑄( ⃗𝑔) ∧ 𝑃( ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠)) ⊃ 𝑅( ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠, ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡𝑟𝑎𝑛𝑠 ⃗⃗⃗𝑓 ⃗𝑔 ⃗⃗⃗ ⃗⃗ ⃗𝑖𝑠)).
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𝑐ℎ𝑎𝑛𝑛𝑒𝑙1
𝑔1

𝑐ℎ𝑎𝑛𝑛𝑒𝑙2
𝑔2

𝑠𝑒𝑛𝑑𝑒𝑟
𝑓1

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
𝑓2, 𝑓3

𝑖𝑛𝑝𝑢𝑡 𝑜𝑢𝑡𝑝𝑢𝑡𝑖𝑠

𝑎𝑠 𝑏𝑠

𝑐𝑠

𝑗𝑠

𝑑𝑠

Fig. 7.2: Network topology for the alternating bit protocol.

7.4.4 Specification Based on the Network Topology
The ABP satisfies the three conditions highlighted in § 7.4.3 for the spe-
cification of a network of communicating process:

1. It has a fixed topology given by Fig. 7.2.

2. There are four agents: it is necessary to program the 𝑠𝑒𝑛𝑑𝑒𝑟 and
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 agents; the 𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙2 agents are predetermined.

3. The input and the predetermined agents satisfy certain conditions,
namely, 𝑖𝑠 is a stream, and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙2 are fair unreliable
transmission channels (see § 7.4.2). The purpose of the ABP is to pro-
duce output which is in a bisimilarity relation _≈_ (see Example 6.17)
with the input.

Let 𝑓1 be the function associated with the 𝑠𝑒𝑛𝑑𝑒𝑟, 𝑓2 and 𝑓3 (one function
for each output) the functions associated with the 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, and 𝑔1 and 𝑔2 the
functions associated with 𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙2, respectively. The 𝑡𝑟𝑎𝑛𝑠
function associated with the topology of the ABP satisfies

𝑗𝑠 = 𝑡𝑟𝑎𝑛𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠,

and we can determine the output 𝑗𝑠 from the input 𝑖𝑠 using the following
system of equations:

𝑎𝑠 = 𝑓1 𝑖𝑠 𝑑𝑠,
𝑏𝑠 = 𝑔1 𝑎𝑠,
𝑐𝑠 = 𝑓2 𝑏𝑠, (7.4)
𝑑𝑠 = 𝑔2 𝑐𝑠,
𝑗𝑠 = 𝑓3 𝑏𝑠.
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corrupt

corrupt

send, await ack, outinput output
is

as bs

cs

js

ds

os₁

os₂

Fig. 7.3: Stream transformers for the alternating bit protocol.

In consequence, the specification based on the network topology of the
ABP is given by

protocol 𝑓1 𝑓2 𝑓3
def= ∀𝑔1 𝑔2 𝑖𝑠. (ℱ𝑎𝑖𝑟(𝑔1) ∧ ℱ𝑎𝑖𝑟(𝑔2) ∧ 𝒮𝑡𝑟𝑒𝑎𝑚(𝑖𝑠)) ⊃

𝑖𝑠 ≈ 𝑡𝑟𝑎𝑛𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠, (7.5)

where 𝒮𝑡𝑟𝑒𝑎𝑚 is the co-inductive predicate defined in Example 5.28 and
ℱ𝑎𝑖𝑟 is a co-inductive predicate to be defined in § 7.4.6. We get the mutually
recursive equations for the 𝑡𝑟𝑎𝑛𝑠 function by making 𝑎𝑠, 𝑏𝑠, 𝑐𝑠 and 𝑑𝑠 into
functions ℎ𝑎𝑠, ℎ𝑏𝑠, ℎ𝑐𝑠 and ℎ𝑑𝑠, which operate on 𝑓1, 𝑓2, 𝑓3, 𝑔1, 𝑔2 and 𝑖𝑠:

∀ 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠. ℎ𝑎𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠 = 𝑓1 𝑖𝑠 (ℎ𝑑𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠),
∀ 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠. ℎ𝑏𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠 = 𝑔1 (ℎ𝑎𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠),
∀ 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠. ℎ𝑐𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠 = 𝑓2 (ℎ𝑏𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠),

(7.6)
∀ 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠. ℎ𝑑𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠 = 𝑔2 (ℎ𝑐𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠),

∀ 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠. 𝑡𝑟𝑎𝑛𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠 = 𝑓3 (ℎ𝑏𝑠 𝑓1 𝑓2 𝑓3 𝑔1 𝑔2 𝑖𝑠).

7.4.5 First-Order Implementation
Dybjer and Sander programmed the ABP in Miranda. They programmed
the sender by two mutually recursive stream transformers, send and await.
The receiver is programmed as a pair of stream transformers, ack, which
returns the acknowledgement stream cs, and out, which returns the out-
put stream js. Moreover, an unreliable transmission channel is programmed
as a stream transformer, which non-deterministically corrupts the messages
in the stream. They model the channels of the ABP as a stream trans-
former corrupt, which accepts an oracle bit stream as an auxiliary argument
(see § 7.4.2). The above stream transformers are illustrated in Fig. 7.3.
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Before introducing the FOTC-equations satisfied by the ABP’s stream
transformers, we need to add some FOTC-terms. We first add the constant
symbols T and F for bits. They are just synonyms for the FOTC-terms true
and false, respectively.

F T : D
F = false
T = true
{-# ATP definition F T #-}

Moreover, we shall use the not function for negation of bits, <_,_> for pairs,
error for a corrupted message and ok for the constructor of a proper mes-
sage, corresponding to the constructors Nothing and Just, respectively, of
Haskell’s Maybe data type (see Err data type in Appendix E).

not : D → D
not b = if b then false else true
{-# ATP definition not #-}

postulate
<_,_> : D → D → D
ok : D → D
error : D.

Now, the recursive equations for the corrupt stream transformer are:
postulate

corrupt : D → D
corrupt-T : ∀ os x xs →

corrupt (T ∷ os) · (x ∷ xs) ≡ ok x ∷ corrupt os · xs
corrupt-F : ∀ os x xs →

corrupt (F ∷ os) · (x ∷ xs) ≡
error ∷ corrupt os · xs

{-# ATP axiom corrupt-T corrupt-F #-}.

Before introducing the missing FOTC-equations for the stream trans-
formers of the ABP, we shall justify the type D → D for the corrupt stream
transformer, that is, we shall explain our methodology for staying within
first-order in the formalisation of the ABP.

From the where clause for the abpTransH function in the Appendix E, the
system of equations in (7.4) corresponding to Fig. 7.3 is given by

𝑎𝑠 = sendH 𝑖𝑠 𝑑𝑠,
𝑏𝑠 = corruptH 𝑜𝑠1 𝑎𝑠,
𝑐𝑠 = ackH 𝑏𝑠,
𝑑𝑠 = corruptH 𝑜𝑠1 𝑐𝑠,
𝑗𝑠 = outH 𝑏𝑠.
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From this system of equations, given the types of the functions sendH, ackH,
outH and corruptH in Appendix E, the Haskell definitions of the higher-order
mutually recursive equations in (7.6) are given by

type SendTy a = Stream a → Stream (Err Bit) → Stream (a, Bit)
type AckTy a = Stream (Err (a, Bit)) → Stream Bit
type OutTy a = Stream (Err (a, Bit)) → Stream a
type CorruptTy1 a = Stream (a, Bit) → Stream (Err (a, Bit))
type CorruptTy2 = Stream Bit → Stream (Err Bit)

hasH ∷ SendTy a → AckTy a → OutTy a → CorruptTy1 a → CorruptTy2 →
Stream a →
Stream (a, Bit)

hasH f1 f2 f3 g1 g2 is = f1 is (hdsH f1 f2 f3 g1 g2 is)

hbsH ∷ SendTy a → AckTy a → OutTy a → CorruptTy1 a → CorruptTy2 →
Stream a →
Stream (Err (a, Bit))

hbsH f1 f2 f3 g1 g2 is = g1 (hasH f1 f2 f3 g1 g2 is)

hcsH ∷ SendTy a → AckTy a → OutTy a → CorruptTy1 a → CorruptTy2 →
Stream a →
Stream Bit

hcsH f1 f2 f3 g1 g2 is = f2 (hbsH f1 f2 f3 g1 g2 is)

hdsH ∷ SendTy a → AckTy a → OutTy a → CorruptTy1 a → CorruptTy2 →
Stream a →
Stream (Err Bit)

hdsH f1 f2 f3 g1 g2 is = g2 (hcsH f1 f2 f3 g1 g2 is)

transferH ∷ SendTy a →
AckTy a →
OutTy a →
CorruptTy1 a →
CorruptTy2 →
Stream a →
Stream a

transferH f1 f2 f3 g1 g2 is = f3 (hbsH f1 f2 f3 g1 g2 is).

In addition, we redefine the abpTransH function using the transferH func-
tion by

abpTransH ∷ Bit → Stream Bit → Stream Bit → Stream a → Stream a
abpTransH b os1 os2 is =

transferH (sendH b) (ackH b) (outH b)
(corruptH os1) (corruptH os2) is.
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In § 7.4.6, the first-order version of the transferH function will be the
function

transfer : D → D → D → D → D → D → D

whose fourth and fifth arguments will be corrupt os₁ and corrupt os₂,
respectively. For this reason, the type of the corrupt stream transformer
is D → D.

We may also define the corrupt stream transformer as a constant using
one additional FOTC-application _·_ as follows:

postulate
corrupt : D
corrupt-T : ∀ os x xs →

corrupt · (T ∷ os) · (x ∷ xs) ≡
ok x ∷ corrupt · os · xs

corrupt-F : ∀ os x xs →
corrupt · (F ∷ os) · (x ∷ xs) ≡
error ∷ corrupt · os · xs.

However, we only use the FOTC-application when it is strictly necessary for
staying within a first-order formalisation.

Note also we cannot define the corrupt stream transformer as a binary
function by removing the FOTC-application, that is,

postulate
corrupt : D → D → D
corrupt-T : ∀ os x xs →

corrupt (T ∷ os) (x ∷ xs) ≡ ok x ∷ corrupt os xs
corrupt-F : ∀ os x xs →

corrupt (F ∷ os) (x ∷ xs) ≡ error ∷ corrupt os xs

because for example, corrupt os₁ would not be of type D as required by the
first-order transfer function.

The previous discussion about the type of the corrupt stream trans-
former also applies to the types of the send, ack and out stream transformers.
On the other hand, we shall use a 4-ary function for representing the await
stream transformer, because it is not an argument of the transfer func-
tion. Perhaps for reasons of “symmetry”, we may also use a binary function
for representing the await stream transformer. However, as was highlighted
above, we only use the FOTC-application when it is strictly necessary.

Now, we continue with the definition of the missing stream transformers
for the ABP. The send, await, ack and out stream transformers satisfy the
following recursive equations:

postulate
send out ack : D → D
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await : D → D → D → D → D

send-eq : ∀ b i is ds →
send b · (i ∷ is) · ds ≡ < i , b > ∷ await b i is ds

await-ok≡ : ∀ b b' i is ds → b ≡ b' →
await b i is (ok b' ∷ ds) ≡
send (not b) · is · ds

await-ok≢ : ∀ b b' i is ds → b ≢ b' →
await b i is (ok b' ∷ ds) ≡
< i , b > ∷ await b i is ds

await-error : ∀ b i is ds →
await b i is (error ∷ ds) ≡
< i , b > ∷ await b i is ds

out-ok≡ : ∀ b b' i bs → b ≡ b' →
out b · (ok < i , b' > ∷ bs) ≡ i ∷ out (not b) · bs

out-ok≢ : ∀ b b' i bs → b ≢ b' →
out b · (ok < i , b' > ∷ bs) ≡ out b · bs

out-error : ∀ b bs → out b · (error ∷ bs) ≡ out b · bs

ack-ok≡ : ∀ b b' i bs → b ≡ b' →
ack b · (ok < i , b' > ∷ bs) ≡ b ∷ ack (not b) · bs

ack-ok≢ : ∀ b b' i bs → b ≢ b' →
ack b · (ok < i , b' > ∷ bs) ≡ not b ∷ ack b · bs

ack-error : ∀ b bs → ack b · (error ∷ bs) ≡ not b ∷ ack b · bs

{-# ATP axiom send-eq await-ok≡ await-ok≢ await-error
out-ok≡ out-ok≢ out-error
ack-ok≡ ack-ok≢ ack-error #-}.

7.4.6 Correctness Proof
We shall start by adding some inductive and co-inductive predicates, which
will be used in the proof of the correctness of the ABP.

First, we formalise the fairness property of the unreliable transmission
channels using a co-inductive predicate Fair : D → Set. This property will
be encoded in terms of oracle bit streams, where the bits T and F represent
proper and improper transmission, respectively. Fairness here means that
the bit stream contains a potentially infinite number of T’s and is defined as
follows:

data F*T : D → Set where
f*tnil : F*T (T ∷ [])
f*tcons : ∀ {ft} → F*T ft → F*T (F ∷ ft)

132



§ 7.4. Alternating Bit Protocol

postulate
Fair : D → Set

Fair-out : ∀ {os} → Fair os →
∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os'

Fair-coind : (A : D → Set) →
(∀ {os} → A os → ∃[ ft ] ∃[ os' ] F*T

ft ∧ os ≡ ft ++ os' ∧ A os') →
∀ {os} → A os → Fair os

{-# ATP axiom Fair-out #-}.

Here, F*T ft is an inductive predicate expressing that ft is a (possibly
empty) finite list of F’s followed by a final T.

In the proofs below, we need some properties related to the co-inductive
predicate Fair. These properties are proved using our combined approach.

One of the properties required states an introduction rule for the Fair
predicate:

Fair-in : ∀ {os} →
∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' →
Fair os

Fair-in h = Fair-coind A h' h
where
A : D → Set
A os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os'
{-# ATP definition A #-}

postulate
h' : ∀ {os} → A os →

∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ A os'
{-# ATP prove h' #-}.

To prove the property, we interactively instantiate the co-induction rule
Fair-coind with the predicate A and the required hypothesis h' is automat-
ically proved by the ATPs.

In the proofs below, we shall also make use of the unary inductive pre-
dicate Bit : D → Set, which is just a synonym for the inductive predicate
Bool.

Bit : D → Set
Bit b = Bool b
{-# ATP definition Bit #-}.

The ABP has two behaviours depending on the starting bit b : Bit.
Following Dybjer and Sander [1989], we shall prove both behaviours simul-
taneously with the help of two auxiliary lemmas called lemma₁ and lemma₂.
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The first lemma states that given a starting state S of the ABP, we will
arrive at a state S', where the message has been received by the receiver but
the acknowledgement has not yet been received by the sender. Formally, the
states S and S' are represented by two FOTC-relations.

S : D → D → D → D → D → D → D → D → D → Set
S b is os₁ os₂ as bs cs ds js =
as ≡ send b · is · ds
∧ bs ≡ corrupt os₁ · as
∧ cs ≡ ack b · bs
∧ ds ≡ corrupt os₂ · cs
∧ js ≡ out b · bs

{-# ATP definition S #-}

S' : D → D → D → D → D → D → D → D → D → D → Set
S' b i' is' os₁' os₂' as' bs' cs' ds' js' =

as' ≡ await b i' is' ds'
∧ bs' ≡ corrupt os₁' · as'
∧ cs' ≡ ack (not b) · bs'
∧ ds' ≡ corrupt os₂' · (b ∷ cs')
∧ js' ≡ out (not b) · bs'

{-# ATP definition S' #-}.

Formally, the first lemma is represented by

lemma₁ :
∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₁ →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]

Fair os₁'
∧ Fair os₂'
∧ S' b i' is' os₁' os₂' as' bs' cs' ds' js'
∧ js ≡ i' ∷ js'.

The second lemma states that given a state S', we will arrive at a new
starting state, which is identical to the old starting state except that the bit
has been alternated and the first item in the input stream has been removed.
Formally, the second lemma is represented by
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lemma₂ :
∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} →
Bit b →
Fair os₁' →
Fair os₂' →
S' b i' is' os₁' os₂' as' bs' cs' ds' js' →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]

Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'.

(Dybjer and Sander [1989] require the additional hypothesis Stream is' in
both lemmas. The hypotheses were not used in their formalisation nor in
ours).

The proofs of both lemma₁ and lemma₂ have the same shape. For lemma₁,
given that Fair os₁, we can unfolding os₁ using Fair-out and then we
know there exists ft₁ os₁' : D such that F*T ft₁, os₁ ≡ ft₁ ++ os₁' and
Fair os₁'. Similarly, for lemma₂, by unfolding os₂', we know there exists
ft₂ os₂'' : D such that F*T ft₂, os₂' ≡ ft₂ ++ os₂'' and Fair os₂''. The
proofs of lemma₁ and lemma₂ proceed then by induction on ft₁ and ft₂,
respectively. Both lemmas are proved using our combined approach in Ap-
pendix F.

Proving that the ABP is correct amounts to proving that each message is
eventually transmitted properly. Formally, this means that the input stream
is bisimilar to the output stream. This property can only hold if one assumes
that the transmission channels are fair in the sense described above.

The correctness of the ABP is stated by

abpCorrect : ∀ {b} → Bit b → protocol (send b) (ack b) (out b),

where protocol corresponds to the specification based on the network to-
pology given in (7.5). Since the protocol specification uses the higher-order
equations in (7.6), we need a first-order version of them for working within
FOTC.

postulate
transfer : D → D → D → D → D → D → D
transfer-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →

transfer f₁ f₂ f₃ g₁ g₂ is ≡
f₃ · (hbs f₁ f₂ f₃ g₁ g₂ is)

{-# ATP axiom transfer-eq #-}

postulate
has hbs hcs hds : D → D → D → D → D → D → D
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has-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
has f₁ f₂ f₃ g₁ g₂ is ≡
f₁ · is · (hds f₁ f₂ f₃ g₁ g₂ is)

hbs-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
hbs f₁ f₂ f₃ g₁ g₂ is ≡ g₁ · (has f₁ f₂ f₃ g₁ g₂ is)

hcs-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
hcs f₁ f₂ f₃ g₁ g₂ is ≡ f₂ · (hbs f₁ f₂ f₃ g₁ g₂ is)

hds-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
hds f₁ f₂ f₃ g₁ g₂ is ≡ g₂ · (hcs f₁ f₂ f₃ g₁ g₂ is)

{-# ATP axiom has-eq hbs-eq hcs-eq hds-eq #-}.

Here, transfer, has, hbs, hcs and hds are the first-order versions of those
in (7.6). The transfer function simultaneously computes the output js and
the streams as, bs, cs and ds, given the first-order stream transformers f₁,
f₂, f₃, g₁ and g₂ (see Fig. 7.2.)

Now, we can rewrite the abpCorrect theorem as

abpCorrect : ∀ {b os₁ os₂ is} →
Bit b → Fair os₁ → Fair os₂ → Stream is →
is ≈ abpTransfer b os₁ os₂ is

where the auxiliary abpTransfer function computes the output js from the
input is, and accepts three more arguments: the initial bit b and the two
oracle bit streams os₁ and os₂.

postulate
abpTransfer : D → D → D → D → D
abpTransfer-eq :

∀ b os₁ os₂ is →
abpTransfer b os₁ os₂ is ≡
transfer (send b) (ack b) (out b)

(corrupt os₁) (corrupt os₂) is
{-# ATP axiom abpTransfer-eq #-}.

The proof of abpCorrect is by co-induction using the ≈-coind rule (see
Example 6.17). We prove that is and js are in the greatest bisimulation _≈_
by finding another bisimulation B which they are in.

Following Dybjer and Sander [1989], the bisimulation B is defined by
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B : D → D → Set
B is js = ∃[ b ] ∃[ os₁ ] ∃[ os₂ ] ∃[ as ] ∃[ bs ] ∃[ cs ] ∃[ ds ]

Stream is
∧ Bit b
∧ Fair os₁
∧ Fair os₂
∧ S b is os₁ os₂ as bs cs ds js

{-# ATP definition B #-}.

Our combined proof of the correctness of the ABP is given by:

abpCorrect :
∀ {b is os₁ os₂} → Bit b → Stream is → Fair os₁ → Fair os₂ →
is ≈ abpTransfer b os₁ os₂ is

abpCorrect {b} {is} {os₁} {os₂} Bb Sis Fos₁ Fos₂ = ≈-coind B h₁ h₂
where
postulate h₁ : ∀ {is js} → B is js → ∃[ i' ] ∃[ is' ] ∃[ js' ]

is ≡ i' ∷ is' ∧ js ≡ i' ∷ js' ∧ B is' js'
{-# ATP prove h₁ lemma₁ lemma₂ not-Bool #-}

postulate h₂ : B is (abpTransfer b os₁ os₂ is)
{-# ATP prove h₂ #-}.

Both hypotheses h₁ and h₂ are automatically proved by the ATPs. The proof
of the first hypothesis uses not-Bool as local hypothesis, which states the
totality of the not function, and the auxiliary lemmas lemma₁ and lemma₂.

Finally, since the FOTC is a type-free theory, we automatically prove
that the output of the ABP is a Stream.

postulate
abpTransfer-Stream :

∀ {b os₁ os₂ is} → Bit b → Fair os₁ → Fair os₂ → Stream is →
Stream (abpTransfer b os₁ os₂ is)

{-# ATP prove abpTransfer-Stream ≈→Stream₂ abpCorrect #-}.

For this proof, we use the fact that the input and output of the ABP are
in the bisimilarity relation _≈_, and we use the ≈→Stream₂ theorem which is
proved using our combined approach.
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≈→Stream₂ : ∀ {xs ys} → xs ≈ ys → Stream ys
≈→Stream₂ {xs} {ys} h = Stream-coind A h' (xs , h)

where
A : D → Set
A zs = ∃[ ws ] ws ≈ zs
{-# ATP definition A #-}

postulate h' : ∀ {ys} → A ys → ∃[ y' ] ∃[ ys' ]
ys ≡ y' ∷ ys' ∧ A ys'

{-# ATP prove h' #-}.

7.5 Using the Automatic Theorem Provers
As previously mentioned, the overall performance of the ATPs in our form-
alisations is quite satisfactory. Just to give an idea of our use of the ATPs
in the examples presented in this chapter, we show in Table 7.1 the number
of theorems which were automatically proved. Since some of these theorems
are based on previous theorems, also automatically proved, Table 7.1 also
shows the number of theorems which were automatically proved in some
common libraries used in our examples.

Proven theorems
Libraries
Inequalities properties 179
Arithmetic properties 75
Booleans properties 38
List properties 28
Examples
McCarthy’s 91-function (§ 7.1) 75
Alternating Bit Protocol (§ 7.4) 30
Collatz function (§ 7.3) 25
Mirror function (§ 7.2) 22

Table 7.1: Theorems automatically proved by the ATPs.

138



Chapter 8

Conclusions

In this final chapter, we summarise the main ideas and results of this thesis,
and we show some possible improvements to our work.

8.1 Results
The main goal of this thesis has been to build a computer-assisted frame-
work for reasoning about programs written in Haskell-like lazy functional
languages. To achieve this goal, we have worked on different subjects.

• Based on LTPCF, we defined FOTC, which is a first-order program-
ming logic suitable for reasoning about mainstream lazy functional
programs including those that use general recursion (structural and
non-structural recursion, and guarded and unguarded co-recursion).
FOTC can deal with higher-order functions, (co-)inductive definitions
of data types and proofs by (co-)induction. The consistency of our
theory was established by the existence of a domain model for its
term language, where the (co-)inductively defined predicates were in-
terpreted as subsets of this domain model. Moreover, we can extend
FOTC with new positive (co-)inductively defined predicates keeping
the consistency of the theory.

• We chose a mature system as our interactive proof assistant to form-
alise our programming logics. We think this was a good idea because
building a mature proof assistant from scratch for this purpose would
have been a daunting task. By using Agda as a logical framework, we
could use its support for interactively building proofs, Agda’s proof en-
gine: (i) support for inductively defined types, including inductive fam-
ilies, and function definitions using pattern matching on such types,
(ii) normalisation during type-checking, (iii) commands for refining
proof terms, (iv) Agda’s coverage checker and (v) Agda’s termination
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checker. We used Agda’s proof engine to handle the high-level proofs
steps (for example, introduction of hypothesis, case analysis and the
use of (co-)induction principles) required in the verification of lazy
functional programs.

• Since the verification of lazy functional programs requires the use of
equational reasoning or simple first-order reasoning, we used off-the-
shelf ATPs to deal with both kinds of reasoning. For this purpose,
we extended Agda with the ATP-pragma, which instructs Agda to
interact with the ATPs. In addition, we wrote the Apia program, a
Haskell program using Agda as a Haskell library, that translated our
Agda representation of first-order formulae into the TPTP language
understood by many ATPs. The Apia program also calls the ATPs
to try to prove the translated conjectures. The overall result of using
off-the-shelf ATPs (E, Equinox, Metis, SPASS and Vampire) is quite
satisfactory.

In addition, Agda seems to work well as an interface to ATPs. We have
used it not only for FOTC, but also for other first-order theories such as group
theory and Peano arithmetic, and we had encouraging results. Therefore, we
are interested in making our Apia program available in the Agda standard
distribution because we think there is great scope for a new use of Agda: as
an interface to TPTP-based first-order theorem provers.

8.2 Future Work
Our approach for reasoning about lazy functional programs can be improved
in several ways. We present some of them below.

8.2.1 Proof Term Reconstruction
At the moment, the communication between Agda and the ATPs is uni-
directional because we use the ATPs as oracles. A first-order conjecture rep-
resented in Agda is sent to the ATPs via the Apia program, and the ATPs
prove or disprove it (using a fixed timeout). We would like to modify our
Apia program so that it can return witnesses for the automatically generated
proofs so that they can be checked by Agda, as done by the Sledgehammer
tool for Isabelle/HOL. This modification would increase the reliability of our
approach.

8.2.2 Using Agda’s Standard Library in the First-Order
Theory of Combinators

Agda’s standard library [Danielsson et al. 2014] contains many useful stand-
ard functions on Booleans, natural numbers, lists, and other data types.
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In addition, this library contains (the proofs of) many properties of these
functions. Is it possible to transfer these functions and the proofs of their
properties to FOTC? An affirmative answer to this question would avoid
rewriting many structural recursive functions and the proofs of their prop-
erties in FOTC. Theoretically we know that the transference is possible given
the existence of a translation of Martin-Löf’s type theory into LTC [Aczel
1977b; Smith 1978, 1984], but further research is needed to carry this out
in practice.

8.2.3 Connection to SMT Solvers
An interesting improvement to our Apia program would be to integrate SMT
solvers into it. For example, the proofs of inequality properties required for
the verification of McCarthy’s 91-function (see § 7.1) are easier using a
system like MetiTarski [Akbarpour and Paulson 2010], which is designed for
proving universally quantified inequalities in a certain theory with the help
of SMT solvers, such as Z3 [de Moura and Bjørner 2008].

8.2.4 Connection to Inductive Theorem Provers
Other interesting future work is to integrate our Apia program into systems
that can automatically do proofs by induction; currently we only automate
FOL reasoning. In fact, Agda comes with its own automatic theorem prover
called Agsy—the Agda Synthesiser [Lindblad and Benke 2006]—which can
do proofs by induction. By using (automatic) inductive theorem provers, our
methodology for inductive proofs should improve.

For example, let 𝑃 and 𝑄 be theorems which must be proved by in-
duction. The latest prover in the Boyer-Moore line of inductive theorem
provers, ACL2 [Kaufmann, Manolios and Moore 2000], automatically proves
𝑃 or suggests that 𝑄 is needed for the proof of 𝑃 . The required theorem 𝑄
could be proved using ACL2, or if it fails, using our combined approach for
inductive proofs, that is, by instructing Agda to do pattern matching and
the ATPs automatically proving the base and step cases of the induction.

8.2.5 Polymorphism
FOTC is a type-free logic. For example, the inductive predicate List defined
in Example 5.14 represents “heterogeneous” total and finite lists, such as

xs : D
xs = 0 ∷ true ∷ 1 ∷ false ∷ [].

We can however also represent “homogeneous” total and finite lists. For
example, the total and finite lists of total and finite natural numbers can be
represented by the inductive predicate
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data ListN : D → Set where
lnnil : ListN []
lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns).

An example of such lists is given by

ys : D
ys = 0 ∷ 1 ∷ 2 ∷ [].

Instead of representing total and finite lists of terms satisfying a particu-
lar unary inductive predicate P using a new “list” predicate, we can define an
inductive predicate Plist of polymorphic total and finite lists parametrised
by the predicate P.

data Plist (P : D → Set) : D → Set where
lnil : Plist P []
lcons : ∀ {x xs} → P x → Plist P xs → Plist P (x ∷ xs).

By using the predicate Plist, the “heterogeneous” total and finite lists and
the total and finite lists of total and finite natural numbers can be defined,
respectively, by

List ListN : D → Set
List = Plist (λ d → d ≡ d)
ListN = Plist N.

Unfortunately, this approach for representing polymorphic total and fi-
nite lists is not within FOL because we cannot use P : D → Set as a para-
meter of the data type PList. In other words, Plist (λ d → d ≡ d) and
Plist N are not first-order formulae. This discussion also applies to co-
inductive types such as Stream (see Example 5.28). Therefore, further re-
search is needed to determine if it is possible to represent polymorphic total
and finite lists (or streams) in FOTC.

8.2.6 Strict Functional Programs
When reasoning about functional programs one should also consider strict
languages (see, for example, Kimmell et al. [2012] and Longley and Pollack
[2004]). Can the approach presented on this thesis be used for reasoning
about strict functional programs?

First, it should be noted that (some of) the equations for strict 𝜆-calculus
are not the same as for the lazy 𝜆-calculus.

For example, in Haskell a lazy application can be defined by (this operator
is redundant, since Haskell ordinary application is lazy)

($) ∷ (a → b) → a → b
f $ a = f a
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and a strict application can be defined by

($!) ∷ (a → b) → a → b
f $! x = x `seq` f x.

The result of the application of the function \_ → 0 to the term loop depends
on the kind of application used. The term

(\_ → 0) $ loop

normalises to 0 because it is not necessary to normalise the term loop, but
the term

(\_ → 0) $! loop

loops because it is necessary to normalise that term.
On the other hand, we could formalise a lazy application by beta in (4.9)

because Agda application is non-strict. Further research is needed to determ-
ine if it is possible to formalise a strict application using a similar approach.
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Appendix A

Some Definitions from
Domain Theory

Here, we present some definitions and theorems from domain theory used
on this thesis.

Definition A.1 (Partially ordered set (poset)). A partially ordered set
(poset) (𝐷, ⊑) is a set 𝐷 on which the binary relation ⊑ satisfies the following
properties:

∀𝑥. 𝑥 ⊑ 𝑥 (reflexive)
∀𝑥 𝑦 𝑧. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⊃ 𝑥 ⊑ 𝑧 (transitive)

∀𝑥 𝑦. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⊃ 𝑥 = 𝑦 (antisymmetry)

Definition A.2 (Monotone function). Let (𝐷, ⊑) and (𝐷′, ⊑′) be two posets.
A function 𝑓 ∶ 𝐷 → 𝐷′ is monotone if

∀𝑥 𝑦. 𝑥 ⊑ 𝑦 ⊃ 𝑓(𝑥) ⊑′ 𝑓(𝑦).

Definition A.3 (𝜔-chain). Let D = (𝐷, ⊑) be a poset. A 𝜔-chain of D is
an increasing chain 𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯, where 𝑑𝑖 ∈ 𝐷.

Definition A.4 (𝜔-complete partial order (𝜔-cpo)). Let D = (𝐷, ⊑) be a
poset. The poset D is a 𝜔-complete partial order (𝜔-cpo) if [Plotkin 1992]

1. There is a least element ⊥ ∈ 𝐷, that is, ∀𝑥. ⊥ ⊑ 𝑥. The element ⊥ is
called bottom.

2. For every 𝜔-chain 𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯, the least upper bound
⨆𝑛∈𝜔 𝑑𝑛 ∈ 𝐷 exists.

Definition A.5 (Lifted set). Let 𝐴 be a set. The symbol 𝐴⊥ denotes the
𝜔-cpo whose elements 𝐴 ∪ {⊥} are ordered by 𝑥 ⊑ 𝑦, if and only if, 𝑥 = ⊥
or 𝑥 = 𝑦 [Mitchell 1996]. The 𝜔-cpo 𝐴⊥ is called 𝐴 lifted.
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⊥

true false

(a) The B⊥ 𝜔-cpo.
⊥

2 …10 n …

(b) The N⊥ 𝜔-cpo.

Fig. A.1: Lifted sets.

Example A.6. The lifted Booleans B⊥ and the lifted natural numbers N⊥
are depicted in Fig. A.1a and Fig. A.1b, respectively.

Example A.7. The 𝜔-cpo LN of lazy natural numbers arises from a non-
strict successor function, that is, succ(⊥) ≠ ⊥. The partial ordering on LN
is depicted in Fig. A.2, where 0 = ⊥, n + 1 = succ(n) and ∞ = ⨆𝑛∈𝜔 n
(see, for example, Escardó [1993]).

⋰

0

0 1

1 2

2 ∞

Fig. A.2: The LN 𝜔-cpo.

Definition A.8 (Continuous function). Let (𝐷, ⊑) and (𝐷′, ⊑′) be two
𝜔-cpos. A function 𝑓 ∶ 𝐷 → 𝐷′ is continuous if [Plotkin 1992]

1. The function is monotone.

2. The function preserves the least upper bounds of the 𝜔-chains, that is,

⨆
𝑛∈𝜔

𝑓(𝑑𝑛) = 𝑓 ( ⨆
𝑛∈𝜔

𝑑𝑛) , for all 𝜔-chains 𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯
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Definition A.9 (Function space of continuous functions). Let (𝐷, ⊑) and
(𝐷′, ⊑′) be two 𝜔-cpos. The function space of continuous functions is the
set [Winskel 1994]

[𝐷 → 𝐷′] = {𝑓 ∶ 𝐷 → 𝐷′ ∣ 𝑓 is continuous}.

This set can be partially ordered point-wise by

𝑓 ⊑ 𝑔 def= ∀𝑑 ∈ 𝐷. 𝑓(𝑑) ⊑′ 𝑔(𝑑),

and its bottom element is 𝜆𝑥.⊥𝐷′ . The function space [𝐷 → 𝐷′] is an 𝜔-cpo.

Theorem A.10 (The fixed-point theorem). Let (𝐷, ⊑) be an 𝜔-cpo. Given
𝑓 ∈ [𝐷 → 𝐷], then

Fix(𝑓) = ⨆
𝑛∈𝜔

𝑓𝑛(⊥),

is the least fixed-point of 𝑓 [Winskel 1994], that is,

∀𝑑. 𝑓(𝑑) ⊑ 𝑑 ⊃ Fix(𝑓) ⊑ 𝑑,
𝑓(Fix(𝑓)) = Fix(𝑓).

Definition A.11 (Coalesced sum). Let D1 = (𝐷1, ⊑1), … , D𝑛 = (𝐷𝑛, ⊑𝑛)
be 𝜔-cpos. The coalesced sum—the disjoint union with bottom elements
identified—D1 ⊕ ⋯ ⊕ D𝑛 is the 𝜔-cpo [Plotkin 1992]

(⋃
𝑖≤𝑛

{(𝑖, 𝑑) ∣ 𝑑 ∈ 𝐷𝑖 ∧ 𝑑 ≠ ⊥}) ∪ ⊥

with the order

𝑥 ⊑ 𝑦 def= 𝑥 = ⊥ or ∃𝑖 ≤ 𝑛.∃𝑑, 𝑑′ ∈ 𝐷𝑖. 𝑑 ⊑𝑖 𝑑′ ∧ 𝑥 = (𝑖, 𝑑) ∧ 𝑦 = (𝑖, 𝑑′).

Associated with the coalesced sum are the injection functions

𝑖𝑛𝑖 ∶ D𝑖 → D1 ⊕ ⋯ ⊕ D𝑛

defined by

𝑖𝑛𝑖(𝑑) = {⊥ if 𝑑 = ⊥,
(𝑖, 𝑑) otherwise.

147





Appendix B

Two Induction Principles
for N and their Equivalence

In remark 4.9, we showed two induction principles for the inductive pre-
dicate N. Here, we present the proof of the equivalence of these inductive
principles.

-- The inductive predicate for the total and finite natural
-- numbers.
data N : D → Set where

nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)

-- The induction principle using the hypothesis N n.
N-ind₁ : (A : D → Set) →

A zero →
(∀ {n} → N n → A n → A (succ₁ n)) →
∀ {n} → N n → A n

N-ind₁ A A0 h nzero = A0
N-ind₁ A A0 h (nsucc Nn) = h Nn (N-ind₁ A A0 h Nn)

-- The induction principle without using the hypothesis N n.
N-ind₂ : (A : D → Set) →

A zero →
(∀ {n} → A n → A (succ₁ n)) →
∀ {n} → N n → A n

N-ind₂ A A0 h nzero = A0
N-ind₂ A A0 h (nsucc Nn) = h (N-ind₂ A A0 h Nn)
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-- N-ind₂ from N-ind₁.
N-ind₂' : (A : D → Set) →

A zero →
(∀ {n} → A n → A (succ₁ n)) →
∀ {n} → N n → A n

N-ind₂' A A0 h = N-ind₁ A A0 (λ _ → h)

-- N-ind₁ from N-ind₂.
N-ind₁' : (A : D → Set) →

A zero →
(∀ {n} → N n → A n → A (succ₁ n)) →
∀ {n} → N n → A n

N-ind₁' A A0 h {n} Nn = ∧-proj₂ (N-ind₂ B B0 h' Nn)
where
B : D → Set
B n = N n ∧ A n

B0 : B zero
B0 = nzero , A0

h' : ∀ {m} → B m → B (succ₁ m)
h' (Nm , Am) = nsucc Nm , h Nm Am
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Appendix C

Streams Properties

In Example 5.31, we described the proof that the length of a stream is ∞.
Here, we present this proof.

lengthCong : ∀ {xs ys} → xs ≡ ys → length xs ≡ length ys
lengthCong refl = refl

streamLength : ∀ {xs} → Stream xs → length xs ≈N ∞
streamLength {xs} Sxs = ≈N-coind R h₁ h₂

where
R : D → D → Set
R m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞

h₁ : ∀ {m n} → R m n →
m ≡ zero ∧ n ≡ zero

∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n')
h₁ {m} {n} (xs , Sxs , m=lxs , n≡∞) = helper₁ (Stream-out Sxs)
where
helper₁ : (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs') →

m ≡ zero ∧ n ≡ zero
∨ (∃[ m' ] ∃[ n' ]

m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n')
helper₁ (x' , xs' , xs≡x'∷xs' , Sxs') =

inj₂ (length xs'
, ∞
, helper₂
, trans n≡∞ ∞-eq
, (xs' , Sxs' , refl , refl))

where
helper₂ : m ≡ succ₁ (length xs')
helper₂ =

trans m=lxs (trans (lengthCong xs≡x'∷xs') (length-∷ x' xs'))
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C. Streams Properties

h₂ : R (length xs) ∞
h₂ = xs , Sxs , refl , refl
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Appendix D

The mirror Function: Proofs
of Some Properties

We present here the proofs of some properties using our combined proof
approach. These properties are used in the correctness proof of the mirror
function described in § 7.2.

postulate reverse-[x]≡[x] : ∀ x → reverse (x ∷ []) ≡ x ∷ []
{-# ATP prove reverse-[x]≡[x] #-}

++-rightIdentity : ∀ {xs} → Forest xs → xs ++ [] ≡ xs
++-rightIdentity fnil = ++-leftIdentity []
++-rightIdentity (fcons {x} {xs} Tx Fxs) =

prf (++-rightIdentity Fxs)
where postulate prf : xs ++ [] ≡ xs → (x ∷ xs) ++ [] ≡ x ∷ xs

{-# ATP prove prf #-}

rev-Forest : ∀ {xs ys} → Forest xs → Forest ys →
Forest (rev xs ys)

rev-Forest {ys = ys} fnil Fys = prf
where postulate prf : Forest (rev [] ys)

{-# ATP prove prf #-}
rev-Forest {ys = ys} (fcons {x} {xs} Tx Fxs) Fys =

prf (rev-Forest Fxs (fcons Tx Fys))
where postulate prf : Forest (rev xs (x ∷ ys)) →

Forest (rev (x ∷ xs) ys)
{-# ATP prove prf #-}

postulate
reverse-Forest : ∀ {xs} → Forest xs → Forest (reverse xs)

{-# ATP prove reverse-Forest rev-Forest #-}
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reverse-++ : ∀ {xs ys} → Forest xs → Forest ys →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

reverse-++ {ys = ys} fnil Fys = prf
where
postulate prf : reverse ([] ++ ys) ≡ reverse ys ++ reverse []
{-# ATP prove prf ++-rightIdentity reverse-Forest #-}

reverse-∷ : ∀ {x ys} → Tree x → Forest ys →
reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])

reverse-∷ {x} Tx fnil = prf
where postulate prf : reverse (x ∷ []) ≡ reverse [] ++ x ∷ []

{-# ATP prove prf #-}

reverse-∷ {x} Tx (fcons {y} {ys} Ty Fys) = prf
where
postulate prf : reverse (x ∷ y ∷ ys) ≡

reverse (y ∷ ys) ++ x ∷ []
{-# ATP prove prf reverse-[x]≡[x] reverse-++ #-}
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Appendix E

The Alternating Bit Protocol
Written in Haskell

This program is an adaptation of the Miranda [Turner 1986] program writ-
ten in [Dybjer and Sander 1989]. Although Miranda’s and Haskell’s list
data types allow the definitions of potentially infinite lists, we use the
Stream data type from the streams library [Kmett 2014] to avoid the warn-
ing NonExhaustivePatternMatch generated by GHC [The GHC Development
Team 2014] given that we do not pattern match on the empty list.

{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UnicodeSyntax #-}

module Main where

import Data.Stream.Infinite ( Stream( (:>) ) )

type Bit = Bool

-- Data type used to model possible corrupted messages.
data Err a = Error | Ok a

-- The mutual sender functions.
sendH ∷ Bit → Stream a → Stream (Err Bit) → Stream (a, Bit)
sendH b input@(i :> _) ds = (i , b) :> awaitH b input ds

awaitH ∷ Bit → Stream a → Stream (Err Bit) → Stream (a, Bit)
awaitH b input@(i :> is) (Ok b' :> ds) =

if b == b'
then sendH (not b) is ds
else (i, b) :> awaitH b input ds

awaitH b input@(i :> _) (Error :> ds) = (i, b) :> awaitH b input ds

-- The receiver functions.
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ackH ∷ Bit → Stream (Err (a, Bit)) → Stream Bit
ackH b (Ok (_, b') :> bs) =
if b == b' then b :> ackH (not b) bs else not b :> ackH b bs

ackH b (Error :> bs) = not b :> ackH b bs

outH ∷ Bit → Stream (Err (a, Bit)) → Stream a
outH b (Ok (i, b') :> bs) =
if b == b' then i :> outH (not b) bs else outH b bs

outH b (Error :> bs) = outH b bs

-- The fair unreliable transmission channel.
corruptH ∷ Stream Bit → Stream a → Stream (Err a)
corruptH (False :> os) (_ :> xs) = Error :> corruptH os xs
corruptH (True :> os) (x :> xs) = Ok x :> corruptH os xs

-- The ABP transfer function.
abpTransH ∷ ∀ a. Bit → Stream Bit → Stream Bit → Stream a → Stream a
abpTransH b os1 os2 is = js
where
as ∷ Stream (a, Bit)
as = sendH b is ds

bs ∷ Stream (Err (a, Bit))
bs = corruptH os1 as

cs ∷ Stream Bit
cs = ackH b bs

ds ∷ Stream (Err Bit)
ds = corruptH os2 cs

js ∷ Stream a
js = outH b bs
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Appendix F

The Alternating Bit
Protocol: Proofs of Some
Properties

We present here the proofs of the lemmas lemma₁ and lemma₂ using our
combined proof approach. Both lemmas are used in the correctness proof of
the alternating bit protocol as described in § 7.4.6.

F.1 Properties Required by the Lemmas

The following properties related to the inductive predicate Bool and the co-
inductive predicate Fair are required by the lemmas. All the properties are
proved using our combined proof approach.

x≢not-x : ∀ {b} → Bool b → b ≢ not b
x≢not-x btrue h = prf

where postulate prf : ⊥
{-# ATP prove prf #-}

x≢not-x bfalse h = prf
where postulate prf : ⊥

{-# ATP prove prf #-}

not-x≢x : ∀ {b} → Bool b → not b ≢ b
not-x≢x Bb h = prf

where postulate prf : ⊥
{-# ATP prove prf x≢not-x #-}
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not-involutive : ∀ {b} → Bool b → not (not b) ≡ b
not-involutive btrue = prf
where postulate prf : not (not true) ≡ true

{-# ATP prove prf #-}
not-involutive bfalse = prf
where postulate prf : not (not false) ≡ false

{-# ATP prove prf #-}

head-tail-Fair : ∀ {os} → Fair os →
os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os

head-tail-Fair {os} Fos with Fair-out Fos
... | (.(T ∷ []) , os' , f*tnil , h , Fos') = prf
where
postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
{-# ATP prove prf #-}

... | (.(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos') = prf
where
postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
{-# ATP prove prf #-}.

tail-Fair : ∀ {os} → Fair os → Fair (tail₁ os)
tail-Fair {os} Fos with Fair-out Fos
... | .(T ∷ []) , os' , f*tnil , h , Fos' = prf
where
postulate prf : Fair (tail₁ os)
{-# ATP prove prf #-}

... | .(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos' = prf
where
postulate prf : Fair (tail₁ os)
{-# ATP prove prf Fair-in #-}.

F.2 First Lemma
-- Auxiliary definitions.

as^ : ∀ b i' is' ds → D
as^ b i' is' ds = await b i' is' ds
{-# ATP definition as^ #-}

bs^ : D → D → D → D → D → D
bs^ b i' is' ds os₁^ = corrupt os₁^ · (as^ b i' is' ds)
{-# ATP definition bs^ #-}

cs^ : D → D → D → D → D → D
cs^ b i' is' ds os₁^ = ack b · (bs^ b i' is' ds os₁^)
{-# ATP definition cs^ #-}

ds^ : D → D → D → D → D → D → D
ds^ b i' is' ds os₁^ os₂^ = corrupt os₂^ · cs^ b i' is' ds os₁^
{-# ATP definition ds^ #-}
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os₁^ : D → D → D
os₁^ os₁' ft₁^ = ft₁^ ++ os₁'
{-# ATP definition os₁^ #-}

os₂^ : D → D
os₂^ os₂ = tail₁ os₂
{-# ATP definition os₂^ #-}

-- Helper function for Lemma 1.
helper₂ :

∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∀ ft₁ os₁' → F*T ft₁ → Fair os₁' → os₁ ≡ ft₁ ++ os₁' →
∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]

Fair os₁'
∧ Fair os₂'
∧ S' b i' is' os₁' os₂' as' bs' cs' ds' js'
∧ js ≡ i' ∷ js'

helper₂ {b} {i'} {is'} {js = js}
Bb Fos₂ s .(T ∷ []) os₁' f*tnil Fos₁' os₁-eq = prf

where
postulate
prf :

∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]
Fair os₁'

∧ Fair os₂'
∧ (as' ≡ await b i' is' ds'

∧ bs' ≡ corrupt os₁' · as'
∧ cs' ≡ ack (not b) · bs'
∧ ds' ≡ corrupt os₂' · (b ∷ cs')
∧ js' ≡ out (not b) · bs')

∧ js ≡ i' ∷ js'
{-# ATP prove prf #-}

helper₂ {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js} Bb Fos₂ s
.(F ∷ ft₁^) os₁' (f*tcons {ft₁^} FTft₁^) Fos₁' os₁-eq =

helper₂ Bb (tail-Fair Fos₂) ihS ft₁^ os₁' FTft₁^ Fos₁' refl
where
postulate os₁-eq-helper : os₁ ≡ F ∷ os₁^ os₁' ft₁^
{-# ATP prove os₁-eq-helper #-}

postulate as-eq : as ≡ < i' , b > ∷ (as^ b i' is' ds)
{-# ATP prove as-eq #-}

postulate bs-eq : bs ≡ error ∷ (bs^ b i' is' ds (os₁^ os₁' ft₁^))
{-# ATP prove bs-eq os₁-eq-helper as-eq #-}

postulate cs-eq : cs ≡ not b ∷ cs^ b i' is' ds (os₁^ os₁' ft₁^)
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{-# ATP prove cs-eq bs-eq #-}

postulate
ds-eq :

ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
∨ ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)

{-# ATP prove ds-eq head-tail-Fair cs-eq #-}

postulate
as^-eq-helper₁ :

ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) →
as^ b i' is' ds ≡
send b · (i' ∷ is')

· ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove as^-eq-helper₁ x≢not-x #-}

postulate
as^-eq-helper₂ :

ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) →
as^ b i' is' ds ≡
send b · (i' ∷ is')
· ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)

{-# ATP prove as^-eq-helper₂ #-}

as^-eq : as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^)

(os₂^ os₂)
as^-eq = case as^-eq-helper₁ as^-eq-helper₂ ds-eq

postulate js-eq : js ≡ out b · bs^ b i' is' ds (os₁^ os₁' ft₁^)
{-# ATP prove js-eq bs-eq #-}

ihS : S b
(i' ∷ is')
(os₁^ os₁' ft₁^)
(os₂^ os₂)
(as^ b i' is' ds)
(bs^ b i' is' ds (os₁^ os₁' ft₁^))
(cs^ b i' is' ds (os₁^ os₁' ft₁^))
(ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂))
js

ihS = as^-eq , refl , refl , refl , js-eq
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-- Lemma 1.
lemma₁ :

∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₁ →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]

Fair os₁'
∧ Fair os₂'
∧ S' b i' is' os₁' os₂' as' bs' cs' ds' js'
∧ js ≡ i' ∷ js'

lemma₁ {b} {i'} {is'} {os₁} {js = js} Bb Fos₁ Fos₂ s =
helper₁ (Fair-out Fos₁)
where
helper₁ :

(∃[ ft ] ∃[ os₁' ] F*T ft ∧ os₁ ≡ ft ++ os₁' ∧ Fair os₁') →
∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]

Fair os₁'
∧ Fair os₂'
∧ S' b i' is' os₁' os₂' as' bs' cs' ds' js'
∧ js ≡ i' ∷ js'

helper₁ (ft , os₁' , FTft , os₁-eq , Fos₁') =
helper₂ Bb Fos₂ s ft os₁' FTft Fos₁' os₁-eq

F.3 Second Lemma
-- Auxiliary definitions.

ds^ : D → D → D
ds^ cs' os₂^ = corrupt os₂^ · cs'
{-# ATP definition ds^ #-}

as^ : D → D → D → D → D → D
as^ b i' is' cs' os₂^ = await b i' is' (ds^ cs' os₂^)
{-# ATP definition as^ #-}

bs^ : D → D → D → D → D → D → D
bs^ b i' is' cs' os₁^ os₂^ = corrupt os₁^ · as^ b i' is' cs' os₂^
{-# ATP definition bs^ #-}

cs^ : D → D → D → D → D → D → D
cs^ b i' is' cs' os₁^ os₂^ = ack (not b) · bs^ b i' is' cs' os₁^ os₂^
{-# ATP definition cs^ #-}

os₁^ : D → D
os₁^ os₁' = tail₁ os₁'
{-# ATP definition os₁^ #-}
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os₂^ : D → D → D
os₂^ ft₂ os₂'' = ft₂ ++ os₂''
{-# ATP definition os₂^ #-}

-- Helper function for Lemma 2.
helper₂ :
∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} →
Bit b →
Fair os₁' →
S' b i' is' os₁' os₂' as' bs' cs' ds' js' →
∀ ft₂ os₂'' → F*T ft₂ → Fair os₂'' → os₂' ≡ ft₂ ++ os₂'' →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]

Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'

helper₂ {b} {i'} {is'} {js' = js'} Bb Fos₁' s'
.(T ∷ []) os₂'' f*tnil Fos₂'' os₂'-eq = prf

where
postulate

prf :
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]
Fair os₁''
∧ Fair os₂''
∧ as'' ≡ send (not b) · is' · ds''
∧ bs'' ≡ corrupt os₁'' · as''
∧ cs'' ≡ ack (not b) · bs''
∧ ds'' ≡ corrupt os₂'' · cs''
∧ js' ≡ out (not b) · bs''

{-# ATP prove prf #-}

helper₂ {b} {i'} {is'} {os₁'} {os₂'} {as'} {bs'} {cs'} {ds'} {js'}
Bb Fos₁' s'
.(F ∷ ft₂) os₂'' (f*tcons {ft₂} FTft₂) Fos₂'' os₂'-eq =
helper₂ Bb (tail-Fair Fos₁') ihS' ft₂ os₂'' FTft₂ Fos₂'' refl

where
postulate os₂'-eq-helper : os₂' ≡ F ∷ os₂^ ft₂ os₂''
{-# ATP prove os₂'-eq-helper #-}

postulate ds'-eq : ds' ≡ error ∷ ds^ cs' (os₂^ ft₂ os₂'')
{-# ATP prove ds'-eq os₂'-eq-helper #-}

postulate
as'-eq : as' ≡ < i' , b > ∷ as^ b i' is' cs' (os₂^ ft₂ os₂'')

{-# ATP prove as'-eq #-}

postulate
bs'-eq :

bs' ≡ ok < i' , b > ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
∨ bs' ≡ error ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')

{-# ATP prove bs'-eq as'-eq head-tail-Fair #-}
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postulate
cs'-eq-helper₁ :

bs' ≡ ok < i' , b > ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'') →
cs' ≡ b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')

{-# ATP prove cs'-eq-helper₁ not-x≢x not-involutive #-}

postulate
cs'-eq-helper₂ :

bs' ≡ error ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'') →
cs' ≡ b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')

{-# ATP prove cs'-eq-helper₂ not-involutive #-}

cs'-eq : cs' ≡ b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
cs'-eq = case cs'-eq-helper₁ cs'-eq-helper₂ bs'-eq

postulate
js'-eq :

js' ≡ out (not b) · bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
{-# ATP prove js'-eq not-x≢x bs'-eq #-}

postulate
ds^-eq : ds^ cs' (os₂^ ft₂ os₂'') ≡

corrupt (os₂^ ft₂ os₂'') ·
(b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂''))

{-# ATP prove ds^-eq cs'-eq #-}

ihS' : S' b i' is'
(os₁^ os₁')
(os₂^ ft₂ os₂'')
(as^ b i' is' cs' (os₂^ ft₂ os₂''))
(bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂''))
(cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂''))
(ds^ cs' (os₂^ ft₂ os₂''))
js'

ihS' = refl , refl , refl , ds^-eq , js'-eq
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-- Lemma 2.
lemma₂ :
∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} →
Bit b →
Fair os₁' →
Fair os₂' →
S' b i' is' os₁' os₂' as' bs' cs' ds' js' →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]

Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'

lemma₂ {b} {is' = is'} {os₂' = os₂'} {js' = js'} Bb Fos₁' Fos₂' s' =
helper₁ (Fair-out Fos₂')
where
helper₁ :

(∃[ ft₂ ] ∃[ os₂'' ] F*T ft₂ ∧ os₂' ≡ ft₂ ++ os₂'' ∧ Fair os₂'') →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]

Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'

helper₁ (ft₂ , os₂'' , FTft₂ , os₂'-eq , Fos₂'') =
helper₂ Bb Fos₁' s' ft₂ os₂'' FTft₂ Fos₂'' os₂'-eq
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