Introduction to Quantum Computing through Shor’s Factorization
Algorithm and Grover’s Search Algorithm

Andrés Sicard Mario Vélez Fredy Gallego

asicard@sigma.eafit.edu.co mvelez@sigma.eafit.edu.co fgallego@delta.eafit.edu.co

student assistant

Cathalina Gutiérrez Luis Ospina Carlos Pérez
cgutierr@delta.eafit.edu.co lospinad@delta.eafit.edu.co cperezmo@delta.eafit.edu.co
student assistant student assistant student assistant

Universidad EAFIT; Medellin, Colombia
12th December 1999

Abstract

We give a brief introduction about quantum computing, we introduce some basic concepts and then
we present Shor’s algorithm and Grover’s Algorithm and their simulation in MATHEMATICATM and
QCL respectively.

1 Introduction

Quantum Computing is a growing field of investigation that involves primarily physic and theoretical com-
putation as long as this computation takes advantage of the properties of quantum mechanics, where the
parallelism implicit in the quantum operations is the point in which the computation acquires its maximal
power.

According to some authors “If currents trends continue, by the year 2020 the basic memory of a computer
will be the size of individual atoms”[9, p.1]. This affirmation together with other more like the solution to
the heat dissipation bring us to see the Quantum Computing like an inevitable step in the same advance of
the technology.

Through quantum parallelism, the computation offers us the attractive possibility of breaking complexities.
A good example of this is the Shor‘s algorithm [7], which reduces the complexity of the fastest classical
algorithm for factoring an integer n in exponential time to polynomial time [7]. This complexity breakage
in Shor’s algorithm is the reason because the Quantum Computing can break unbreakable codes like RSA
cryptosystem. Another example is Grover’s Algorithm which finds a key in an unsorted data base and which
also reduces the complexity, in this case, the reduction is from a polinomial complexity to a minor polinomial
complexity.

103

We are going introduce to Quantum Computing through the Shor’s Algorithm and Grover’s Algorithm; in
section 2 we present some fundamental concepts for them. This concepts are at level of people of computer
science that have basic concepts about statistics and linear algebra. We explain generally steps of the
algorithms and finally we will show the simulation of Shor’s Algorithm in MATHEMATICAT™ and Grover’s
Algorithm in QCL [5].

We hope the reader, after reading this article, understands the main ideas presented on it, feels able to read
other papers about Quantum Computing, and also be stimulated to investigate on this field.

2 Preliminar Concepts

These concepts are only the basic concepts for this article. For more elements about the preliminar concepts
of Quantum Computing refer to [1, 6, 8, 9].

2.1 Quantum Registers and Normalization

The minimum information unit in quantum computing is the qubit which is analogous to the classical bit
and is represented by:

Classical Bit | Quantum Bit (Qubit)
0 | 0)
1 |1)

|0) is called the ket zero and |1} is called the ket one. This notation is known as Dirac bra-ket notation
which is the most usual and natural for quantum computing.

But there is a difference between bits and qubits. A bit can only express one of two states (0 or 1), while a
qubit is a vector and as a vector it can be expressed as linear combinations of the basis vectors {|0),|1}}.
The vector representation of qubits 1is:

0=5). m=(}): (1)

Let | @) be a qubit, then its state is represented by:

|®) =al0)+b]1) lal? + |b)? = 1 a,beC (2)
()
:(;;).

104

The restriction |a|? 4 |b|* = 1 means that the state must be normalized (magnitude=1).

A simple qubit is not very useful. For representing multiple qubits we use tensor product (®). The tensor
product between |0) and |1} is:

[0 @|1)=10,1) (3)

=(0)= ()

Let |[®) =a|0)+b|1) and |¥) = ¢|0) + d|1) be two qubits. General tensor product | ®) ® | ¥) is:

el =(;)e () (1

ac 1 0 0 0
ad 0 1 0 0

=1 | =2l + ad 0 + be 1 + bd 0 (5)
bd 0 0 0 1

=ac|0,0)+ ad|0, 1)+ be|1,0)+bd|1,1). (6)

For 2 qubits we have 4 basis vectors {|0,0),|0,1),]|1,0),|1,1)}, and in a general way, for n qubits we have
2™ basis vectors.

A quantum register is a sequence of qubits such as | 0,0, 1,0). For simplicity we will use decimal notation;
for example, the vector | 1,0, 1) in binary is equal to vector |5) in decimal.

A register can be divided into 2 or more registers. For example, the 8-qubit register | a1, as, ..., ag) where a; €
{0, 1}, could be divided into a register of, let’s say 6 qubits, and a register of 2 qubits: | registerl, register2).
It can also be expressed as |a1,az, as, a4, as, as) | az, ag).

2.2 Superposition of states: Quantum Parallelism

In order to do computations, quantum computing uses linear operators. A linear operator U is a transfor-
mation where for the vectors z, y and the number a we have:

U(az) = aU(z), (7)
Uz +y) =U(x) +Ul(y). (8)

105

And because of this, the appliance of a computation on the system will simultaneously apply the computation
above each basis vector. For example, the computation represented by the linear operator U applied on the
state given by equation (2):

U|<1>>:U[a|o>+b|1>}:aU|o>+bU|1>. 9)
This shows the effect of quatum parallelism.

Linear operators are represented by matrices. Operation between operators and vectors is matrix multipli-
cation. An example of linear operator is the operator NOT which works as follows:

NOT|1) = |0), NOT|0) = | 1). (10)

And for the equivalence between kets and vectors given by equation (1):

vor (1) = (), vor (%) = (1. my

So as the operator is a matrix, and as the operation between operators and vectors is not other than matrix
multiplication:

NOT = ((1) (1)) (12)

There is another restriction about operators: they must be unitary. An operator U is unitary if UT = U~
Ut is the conjugate transpose of the matrix U/. If we define U as:

_fa+ib c+d
U_<e+if g+ih)’ (13)

then, its conjugate transpose is:

UT:<“_ib e_if). (14)

c—1id g—1th

Because U is unitary computation is reversible. So if we want to apply a function on the system, we must
make it reversible. The non-reversible function f(z) made reversible is:

106

f(z,y) = (z,y © f(2)), (15)

where & is the exclusive-or operation. And specially for y = 0,

f(2,0) = (z,00 f(z)) = (z, f(2)), (16)

because (0 @ a) always depends on a. We can see this in the exclusive-or table:

A|B|AeB
010 0
011 1
110 1
111 0

Now let F' be the operator that implements the function f(z) besides we have the double register |z, y).
After applying the operator over the state:

|xp>:%[|o,o>+|1,0>+|2,0>+|3,0>]:%ZILO% (17)

we have:

M

%F[;u,oﬁ = 231 (0)

N — N =
I
o

1 e

10, £(0) + 1L F(1)) + 12, £(2) + (3, F(3)) |- (18)

2.3 The Hadamard Transformation

This transformation assigns at the both possible qubit states the same probability [6, 8]. It is used to
initialize the system although it has other uses as we will see ahead. It only operates on one qubit and it is
defined as follows:

107

1

H|0) = —(|0) + | 1)), 19
10) ¢$> [1)) (19)
1
H|1) - —(]0) —|1)). 20
1) ¢ﬁ> 1)) (20)
The matrix for this transformation is given by:
1 /1 1 .
H= s (1 __1) . (21)
When it is applied to |0), H creates a superposed state %ﬂ 0y + | 1)).

2.3.1 The Walsh - Hadamard Transformation

The Hadamard transformation applied to n qubits is known as the Walsh - Hadamard transformation and
produces a superposition of all 2" possible states. This transformation is defined as follows:

W=HoH®.. oH (22)
1
Wmﬁ&~w®=7§W®+U»®G®+HD®M®G®+HM
1 2" -1
=77 219 (23)

W=H®H
1 /1 1 1 /1 1
-0)l)
1 1 1 1
=50 7 40 24
1 -1 -1 1

108

2.4 Measurement and Probability

Quantum system is a black box, we can not measure the system without disturbing it '. If the system is in a
superposition of states, after measurement, the system is forced to be in only one basis state. In what state
will be the system after measurement? We can not know that, but we can know the probability of being in
any of the states.

The probability of being in a state after measurement is given by the coefficients of the basis vectors. So, if
we measure the state given by equation (2), the probability of getting the value 0 and being in state |0) is
la|? and the probability of getting 1 and being in state | 1) is |b|?, it means:

P(]0)) = |al® and P(|1)) = [b]*. (25)

But we do not need to measure all the system. If we have a double register, we can measure either the first
or the second one. For example, if we have a double register of one qubit each register, and we have the
state:

|®) =al0,0)+6[0,1) +¢|1,0)+d|1,1), (26)

the probability of getting 0 after measuring the second register is |a|? + |¢|? and the probability of getting 1
is [b|? + |d|®. Suppose we get 0, so after measurement the system collapses to [6, 8, 9]:

@) = [a|0,0>—|—c|1,0>, (27)

1
Vlal? + b2

L 1s for state normalization.

where the term ————
[a]2+]b]2

2.5 Quantum Fourier Transform: QFT

Fourier Transform (FT) in a few words, projects a function from the time domain to the frequency domain;
so, functions of period T are projected into functions that have zeros in all values except at multiples of the
frequency f = % [6]. Essence of success of Shor’s algorithm and most of the known quantum algorithms
rests in this feature of Fourier Transform.

The Quantum Fourier Transform (QFT) is a variant of the Fast Fourier Transform (FFT), and only gives
approximated values for functions with periods that are not powers of 2.

The linear operator for the QFT is [1, 6, 7, 9]:

2™ 1 o .
2mice

QFT|2) > o= 3 exp (0 o). (28)

where m is the number of qubits of the register |z).

I This is a consequence of the quantum mechanics properties.

109

3 Shor’s Algorithm for Factoring Integers on a Quantum Com-
puter

Shor’s algorithm factors an integer in polynomial time, reducing the number of steps from

exp(c(logn)3 (loglogn)?) (for some constant ¢) to O((log n)?(loglog n)(logloglogn)) [7]. In order to do that
it uses quantum parallelism. But we know that we cannot measure the quantum state without changing it
and losing information. For that reason we must use something different: to use a periodic function and get
its period with help of the Fourier Transform.

The periodic function we are going to use is [7]:

f(z) =a® mod N, (29)

where N is the number we attempt to factor and a is a random number between 1 < @ < N such that

ged(N,a) =1. 72
Let 7 be the period of the function (29), so we have that 3:

a” =1 mod N, (30)
(@ —=1)=0 mod N, (31)
@/ +1)(@’?>~1)=0 mod N. (32)

This means that dividing (a”/? — 1)(a’”/? + 1) by N gives a remainder of 0. So, if r is even and a’/? # +1
mod N at least (a”/? — 1) or (a”/? + 1) must have a non-trivial common factor with N and we can find it
by calculating gcd(a’”/2 +1,N) and gcd(ar/2 —1,N).

The algorithm proceeds as follows [1, 6, 7, 9]:

1. Find a random number a for the function (29) and create a superposition of the integers that will become
the arguments of the function. So, first we have the state |0,0) %, then we create a superposition on
the first register and finally we apply the function on the state:

M-

[0,0) & — Z|20 —>—Z (33)

where M = 2™ and m is the number of qubits on the first register. M must be of order O(N?) (N is
the number we attempt to factor) so the approximation given by the QFT will be good enough for the
algorithm to work. So, we will choose an M such that N? < M < 2N2.

2gcd(N,a) is the greatest common divisor of N and a.

3¢ = b mod N is called a congruence an it means that (a — b)|N or (¢ — b) mod N = 0. Dividing (a — b) by N gives a
remainder of 0.

10, 0) is a decimal representation of the registers. First and second register will have more than one qubit, depending on
the number we attempt to factor.

110

3.1

Measure the second register and obtain the value u. The new state is [1, 9]:

[1Afl-1

1
\/HT Z: lir+ s, u), (34)

where A = {a/f(a) = u}, ||A]| is the number of elements in the set A and s is the minimum number
such that f(s) =

Apply Quantum Fourier Transform on first register. This give us a function with peaks of probability
on integers closed to multiples of % In our case more exactly multiples of %

Measure first register. We will obtain with high probability a value ¢ closed to a multiple of %, let’s
say A%. This way we can get the period of the function and solve the problem.

. Repeat the procedure if necessary. There are some reasons to repeat the algorithm [6]:

a) The measured value ¢ was not closed enough to a multiple of %

(a)

(b) ged(r,) # 1.

(c) The algorithm yields N as N’s factor.
(d) The period r is odd.

An Example: Factoring 15

. First we choose a random number, let’s say 2 and construct our function: f(z) = 2° mod 15. We

create a superposition of the numbers i = 1,2,...,15 (M = 16 = 2%). In this case we choose M = 16
for simplicity on the example.

16—1

|00>—>\/1_Z|20—i[|00>+|10)+|20> 4 115,0]. (35)

Then we apply the function (see figure (1)):

115 . 1 15 .
%Z;h,f(zpzzg 22 mod 15)
1
:Z“O”H”H'Z A)+]3,8)+ 4, 1)+ - +]15,8)]. (36)

111

— [] [] []
8 h i ’ '
I o " h
Iy ;! " |
I ;o 1) h
oy ;o [/
o [;o [/
© o ;o rot /
= ! \ | \ ! ! I
= / \ , \ / ! /
o0 / | , \ ! \ /
et / | , \ /
L [} |) ! .
= 4 , \\ /'. \ / \ /
=) / \ / \)/ ! /
8 / \ / \ , ! /
bt / / | ! /
R / ! , \ / \ /
» ‘ o | . ! o
2 B 4 \\ // ! 4 ! /
/ L v v,
1 ./ L '® \.,‘
e e
0o 1 2 3 4 5 6 7 8 :

l
9 10 11 12 13 14 15
First Register

Flgure 1: After applying function f(z)

2. We can see that the period r of the function is 4. We measure the second register and obtain a
value, let’s say 4 (this does not mean that we have obtained the period)
A= a) =4} = {2,

={a/f(a) =4} = {2,6,10, 14}. Quantum state collapses to (see figure (2))

Now we have the set

3
Z|4z—|—24 Z4z+24

l\DI»—k [\;|>—k

4)+6,4) + | 10,4) + | 14, 4)|.

(37)
3. Then we apply the Quantum Fourier Transform, QFT, on first register (see figure(3))
care more about second register

. We will not
—3QFT[12)+16)+[10) +|14)]

= [0y~ 14+ 18) - 12)]
P(0)) = P(|4)

(38)
1
= P([8)) = P(]12)) = (39)
4. Finally we measure first register an obtain, let’s say ¢ = 12. So
A c A 12 A3
)\7—6, ——M, ” E, ;—4,)\—3, r=4.

112

Second Register

[A N A N A N N B

l

[
3 4 5 6 7 & 9 10 11 12 13 14
First Register

1 2

Figure 2: After first measure. Value gotten ¢ = 4

Our posible factors are:

ged(2* —1,15) = ged(3,15) = 3,
ged(2* 4+ 1,15) = ged(5,15) = 5,
3 x5=15.

15

We have found the factors of 15 in our first try, but if the algorithm had failed by any of the reasons
mentioned above, with a few repetitions of the algorithm we would surely obtain the factors with a high

probability.

3.2 Simulation on MATHEMATICA™

The simulation was written on MATHEMATICA™ | because it provides many of the operators required by
the simulation and it makes easier to manipulate numerical and symbolic expressions.

The simulation we are going to use was implemented by the Colin P. Williams and Scott H. Clearwater [9],
this simulates the kets and the operators through vectors and matrices. Other features as the measurement
and parallelism are simulated by pseudo-random algorithms and pseudo-parallel algorithms what causes
simulation to be slower than made by classical algorithms.

Now, we will see the factorization of 21 by the simulator.
We just need to type the line:

113

0.25—

Probability

T I I My B B

[
4 5 6 7 8
First Register

Figure 3: After applying Fourier Transform on first register

RunShorsAlgorithm[21]

And let the algorithm works. The first step is to get a random number for the function (lines 2-4) and then
get a number of order 0(N?) which will be our M (lines 5-8). At this point simulation differs from our
presentation of Shor’s Algorithm because our M is always a power of 2, while the M of the simulation is

not.

to 21.
>> Picked a ==

>> Picked M == 450.

Step 2: Picking a '"smooth" M,
441 that has small prime factors.

Step 1: Picking a random integer a, 1 < a < 21, that is co-prime

i.e. an integer of order 0O(N"2) ~

Now it follows to compute the period of the function. But it differs again from our presentation. The
simulation repeats this step O(log M) times, while we just repeat the algorithm if necessary.

0(log(M)) times.

X

Step 3: Computing the period of 8 mod 21. Repeat steps 3(a)-3(g)

Lines 12 through 36 comprend the first point of our presentation of Shor’s algorithm.

114

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Step 3(a): Initially, place Regl and Reg2 in the state |0,0>.

Step 3(b): Loading Regl with a superposition of all integers in
the range 0 to M-1, i.e. creating the superposition 1/Sqrt[M]
Sum[ket[x], {x,0,M-1}

This puts Regl in the state: Regl = 0.0471405 ket[0] + 0.0471405
ket[1] + 0.0471405 ket[2] +
0.0471405 ket[3] + 0.0471405 ket[4] + 0.0471405 ket[5] +
0.0471405 ket[6] + 0.0471405 ket[7] + 0.0471405 ket[8] +
0.0471405 ket[9] + 0.0471405 ket[10] + 0.0471405 ket[11] +
<<432>> + 0.0471405 ket[444] + 0.0471405 ket [445] +
0.0471405 ket[446] + 0.0471405 ket[447] + 0.0471405 ket[448] +
0.0471405 ket [449]

Step 3(c):
X
Loading Reg2 with 8 mod 21 This puts Reg2 in a state representing
a superposition of the integers: {1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1
8, 1, 8,1, 8,1,8, 1, 8, 1, 8}

Then, as in second point of the presentation, it follows the measurement of the second register.

Step 3(d): Measuring the state of Reg2 measureReg2 = 8 The
measurement of Reg2 has a side effect on the state of Regl. In
fact the state of Regl is projected into: projectRegl = 0.0666667
ket[1] + 0.0666667 ket[3] +

0.0666667 ket[5] + 0.0666667 ket[7] + 0.0666667 ket[9] +
.0666667 ket[11] + 0.0666667 ket[13] + 0.0666667 ket[15] +
.0666667 ket[17] + 0.0666667 ket[19] + 0.0666667 ket[21] +
.0666667 ket[23] + <<207>> + 0.0666667 ket [439] +
.0666667 ket[441] + 0.0666667 ket[443] + 0.0666667 ket[445] +
.0666667 ket[447] + 0.0666667 ket [449]

O O O O O

Simulation continues applying Fourier Transform on first register (Point 3 of the explanation).

Step 3(e): Computing discrete Fourier transform of the contents
of Regl.
This may take several minutes! (Remember you are watching a
classical simulation of a quantum
algorithm).
The Fourier transform puts Regl in the state:

115

47

49

50

51

52

53

54

55

56

57

58

59

60

61

Fourier = 0.707107 ket[0] - 0.707107 ket[225]

It follows the measurement of first register. As we mention above the algorithm is repeat several times, each
time getting a value near to a multiple of %

Steps 3(£)&3(g): Sample from Fourier spectrum created in Regl This
entails repeating the previous steps & measuring Regl each time.

The values gotten from the repetition of the algorithm.

Found samples: {ket[225], ket[0], ket[0], ket[0], ket[225],
ket [0],
ket [0], ket[0], ket[225], ket[0], ket[0], ket[225]%}

Next step is to get the period of the function.

Step 4: Extract the period, r, from the given samples. Each sample
provides a value ¢ Finding the closest rational to c/M, whose
denominator is less than N. Each such rational has the form
lambda/r, where r is the period. Period was r=2

And finally, we have achieved our goal: to get the factors of 21.

Step 5: Obtain the factors of N from the period, r. Computing the
factors of n from GCD[x~(r/2) - 1, N] and GCD[x"(r/2) + 1, N] In
this case, a=8, r=2, N=21 GCD[8 - 1, 21] = 7 GCD[8 + 1, 21] = 3 So
the factors of N=21 are 7 and 3. {7, 3}

4 Searching in an unsorted data base

We can imagine an unsorted data base, something like a phone book, unsorted because we know the telephone
number and we are looking for the name. Searching for this name in a classical way would suppose a minimum

amount of % queries®, N is the number of elements in the data base.

When we have a data base of 4 elements, the amount of queries to find an element is 2, but if the number
of elements is 1.000.000, the amount of queries is 500.000, this is a very large number when we are talking

5Generally g is the amount of queries we need in the average, but Grover refer it as the minimal [2].

116

about data base transactions; quantum computation use some properties that let us to reduce this large

number from % to vV IV, for example: in the data base of 4 elements, the amount of queries is the same: 2,
but in the data base of 1.000.000 elements, the amount of queries now is only 1.000, this means a substantial

improvement in searching time.

4.1 Grover’s Algorithm

The problem that seeks to solve this algorithm is the following one:

We have a data base that has N = 27 elements: Sy, Ss,...,Sn. This elements are represented as n bits
chains. If one of the elements, called S,, complies with the condition C'(S,) = 1, i.e, is the element that we
are seeking and for the other states this same condition is equal to 0, i.e. C(Sjz,) = 0, the problem is to
identify the state S, .

In the implementations that actually exists of Grover’s algorithm, is not really implemented the complete
data base, as if we only have the list of telephones, nameless, and to the end of the algorithm, what we
obtain is the position in which is located the element.

We suppose a list of 4 elements (by simplicity). We will call marked element to the telephone number that
we are looking for. This list is implemented with 2 qubits, being the 4 possible combinations of 0 and 1 each
one an element.

The steps of the algorithm are:

1. Initiate the system to the following distribution: \/127 Zi:_ol | £) each one of the N states remains with
the same probability amplitude; this operation is carried out with the Walsh - Hadamard transforma-

tion.
2. The following operations are repeated Round[+v/N] times®:

(a) Apply the diffusion transformation D: Diffusion transformation was implemented thus: D =
WRW, where W is the Walsh - Hadamard transformation matrix and R is the rotation matrix,
that is defined as follows [2]:

Rij = 0ifi#j,
Ri = 1ifi=0, (44)
Ri = —1ifi#0.

(b) Apply a transformation on each element of the system:

=2y ifz=z,, .
b, = { | z) if x # g, (45)
where a € {0,..., N — 1}, i.e., z, is the marked element.

Then, we are going to invert the probability amplitude of the marked element in each iteration.
What is achieved with this step is that at the end of iterations, the probability amplitude of the
marked element is the biggest.

81n all references the amount of iterations appears as /N, but Grover says that the number of iterations is %\/N [3]-

117

3. The resultant state is measured. This final state will be the element S, , the only one that will have a
probability of at least %

The number of iterations (Round[% v/ N]) of the operations should be exact, because this is what guarantees
the probability of the marked element to be greater than % after the iterations. When the operations are not
applied the exact number of times, the marked element remains with a probability less than the remainder

of the possible states, whether that the number of iterations to be greater or smaller than 7V N.

The Grover’s iteration, that consists of the Diffusion matrix and the I, operation defined previously, we are
going to apply it as an operator Q = —I;, WIyW defined in [4], that consists of the diffusion matrix, where
R is replaced with Iy, an operation that we will define later.

4.2 Development of Grover’s Algorithm: An example with 2 qubits
We are going to develop the algorithm with |0, 1) as the marked element, this means that to the end, the
result of measure will be 1, for our example have operator W given by equation (24), operator I given by

equation (45) where 2, = 0 and operator I, given by equation (45) where z, = 1.

1. The system is initiated in 0:
| @) =10,0). (46)

2. Apply the Walsh - Hadamard transformation to normalize the system:

1 1 1 1 1 1
111 -1 1 -1 0 111
WILO=511 1+ -1 1| *|o|[= 2|1
1 -1 -1 1 0 1
1 1 1 1
= — — 1 —|1 —|1,1). 4
D100+ Lo+ Lo+ i (47)
3. Tterate Round[Z+/N] = 2 times:
(a) Apply W upon the system:
1 1 1 1 1 1
1 1 1 1 {1 -1 1 =1 1 0
W(§|0a0>+§|0a1>+§|1a0>+§|1:1>)_Z 1 1 -1 -1 11 10
1 -1 -1 1 1 0
=10,0). (48)

(b) Apply Ip|z) that equals to the rotation matrix and changes the phase (sign) of the state | 0,0):

1,]0,0) = —|0,0). (49)

118

(c) Apply again W to the system:

1 1 1 1

(d) Apply Ix, upon the system, and takes charge of changing the phase (sign) to the element marked

(10,1)).
1 1 1 1 1 1 1 1
I, (—=10,0)—=]0,1)— =|1,0) — = |1,1)) = —= |0, 10,1y — =|1,0) — = | 1,1). 1
(g 10,0y = 210, = Z11,0) = 2 11,1 = =2 10,00+ 2101 = 2 [1,0) = 21,1} (51)
Here we begin to repeat the steps of the iteration:
(a) Apply W:
1 1 1 1 1 1 1 1
—= —10,1)—=|1,0) — = |1,1)) = —= — =0, 1Y+ =|1,0) — = |1,1). 2
W(=510,00+ 5 10,1y~ 5 11,0) = 2 [1,1) = =5 10,0) = S0, 1)+ 5 [1,0)— 5 |1,1). (52)
(b) Apply In|z):
1 1 1 1 1 1 1 1
Iy — = — =0,)+ =-|1,0)— = |1,1) = = — =0, 1)+ =|1,0) — = | 1,1). :
0= 510.0) = 210,14 £ 11,0) = 211, 1) = 210,00~ 20,1+ g [1,0) =2 [1.1). (53)

(c) Apply again W:

1 1 1 1
(d) Apply Iy, upon the system:

L, (|0, 1)) = —]0,1). (55)

4. Measure:

When the system is measured we obtain 1, that is the position of: |0, 1), the marked element”.

7The operator Q has a sign ”—" that is the one that changes the sign to the probability that obtain finally.

119

4.3 Grover’s Algorithm Implementation

The quantum computation has been slowly adopted for anyone who work in computation due to the existence
of a great variety of formalism (notations, matrices, operators, etc), and do not have a representation that
has a similarity with the classical programming languages.

This reason is the one that has motivated the QCL’s author to develop it and thus to be able to offer the
opportunity of an approach in a nice way to the quantum programming and to the concepts related to it.

QCL is a quantum programming language that contains all the elements for the implementation of quantum
algorithms and let us to simulate the execution of the algorithms. It is an application for Linux that can be
obtained in the internet at: http://tph.tuwien.ac.at/ oemer. With the application comes as an example the
implementation of the Shor’s Algorithm (section 3).

Using QCL we develop an implementation of Grover’s algorithm, where we can define a N elements data
base delivering the number of qubits that one want to use to represent the data base and the element that
one wants to mark.

For this development the following functions were implemented:

O Function Inv: This function inverts from 0 to 1 and from 1 to 0, all the qubits of the register q, when
i and z are equals; in order to be able to apply the operator C'Phase [5], which only operates upon
the element 1111...1.

qufunct inv(int x, qureg q) {
int i;
for i = 0 to #qg-1 {
if not bit(x,i) { Not(qlil); }
}
}

O Operator Ix: Is the transformation described in the numeral 45 of the section 4.1, which changes the
phase (sign) of the element that receives.

operator Ix(int x, qureg q) {

inv(x,q);
CPhase(pi,q);
linv(x,q);

}

O Operator @: This is the operator Q defined in section 4.1, where Mix(q), represents the Walsh -
Hadamard transformation.

120

operator Q(int x, qureg q) {
Mix(q);
Ix(0,q);
Mix(q);
Ix(x,q);
}

O Procedure Grover: This procedure is the one that executes the algorithm and its job is initialize the
registers, the variables that are going to be used, determine the number of iterations; to execute the
iterations, measure the system and give the result.

//Receive the number of qubits and Marked element
procedure Grover(int b,int x) {
int N=2"b; //Number of elements in the data base
int C=ceil((Pi/4)*(sqrt(N))); //Number of iterations
int m; //Measure
int i; //Index
qureg q[bl; //Quantum register

reset; //Initialize the system to O
Mix(q); //Normalize
for i = 1 to C { //begin the iteration

Q(x,q); //of the operator Q
}
measure q,m; //Measure the system
print "Measure: ",m; //Print the result

For the execution of the algorithm we invoke the application in the following way:
qcl -bN -i groverN.qcl

Where b indicates that we are going to use N qubits, i indicates that QCL will be used in an interactive
way and groverN.qcl is the name of the file with the source code of the implementation.

An example of this implementation will show the execution for 2 qubits, with 1 as the marked element.

1. We execute the algorithm:

1 qcl -b2 -i groverN.qcl

121

2. At this time we show that we are going to use 2 qubits that let us have 4 elements, from 0 to 3. In the

execution a message appears indicating us how to use the algorithm (lines 2-4).

2 Use: Grover(n,q)
3 n -> Number of qubits.
4 x —> Marked element.

3. Now we initiate the procedure indicating the number of qubits and the marked element:

5 Grover(2,1)

4. Apply the first operations, reset that carries the initial state to zeros (lines 6- 7) and apply the first

Walsh - Hadamard transformation (W) (lines 8-9), that we use for normalize the system?:

6 @RESET

7 %100>

s @Mix(qureg gq=[10>)

9 %0.5 100> + 0.5 [10> + 0.5 01> + 0.5 [11>

5. Then the cycle begins, it will repeat 2 times the operator @ on the system (lines 10-61)

(a) Apply the first operation in @, W (lines 10-11); then apply 7y (lines 12 - 22) the rotation matrix

and changes the phase (sign) of the state |0,0) (line 22):

10 @ Mix(qureg g=[10>)
11 % 1 |00>

12 H I_O

13 @ Not(qureg g=|.0>)
14 % 1 |01>

15 @ Not(qureg g=10.>)
16 % 1 |11>

17 @ CPhase(real phi=3.141593,qureg g=|10>)
18 % -1 |11>

15 @ !Not(qureg g=10.>)
20 % -1 |01>

21 @ !Not(qureg g=|.0>)
22 % -1 |OO>

(b) Apply again W to the system (lines 23 -24) and then apply I, , that changes the phase (sign) to

the marked element, in this case the element 1 (lines 25-31):

8 The symbol @ indicates the operation executed and % indicates how the system remains after the execution of the operation.

122

23 @ Mix(qureg g=[10>)

24 % -0.5 100> + -0.5 [10> + -0.5 |01> + -0.5 [11>
25 H I_X_1

26 @ Not(qureg g=10.>)

27 % -0.5 |10> + -0.5 |00> + -0.5 [11> + -0.5 |01>
28 @ CPhase(real phi=3.141593,qureg g=|10>)

29 % -0.5 |10> + -0.5 |00> + 0.5 |11> + -0.5 |01>
30 @ !Not(qureg g=[0.>)

31 % -0.5 100> + -0.5 |[10> + 0.5 |[01> + -0.5 [11>

(c) From here on steps of the iteration are repeated. Apply W (lines 32-33), Iy (lines 34-44), W again

(lines 45-46) and finally I, (lines 47-53) :

a2 @ Mix(qureg g=[10>)

33 % -0.5 [00> + 0.5 [10> + -0.5 |01> + -0.5 |11>
34 H I_O

as @ Not(qureg g=|.0>)

a6 % -0.5 [01> + 0.5 [11> + -0.5 |00> + -0.5 |10>
a7 @ Not(qureg g=10.>)

as % -0.5 [11> + 0.5 [01> + -0.5 [10> + -0.5 |00>
39 @ CPhase(real phi=3.141593,qureg g=|10>)

40 % 0.5 [11> + 0.5 |01> + -0.5 [10> + -0.5 |00>
a @ !Not(qureg g=10.>)

42 % 0.5 |01> + 0.5 [11> + -0.5 |00> + -0.5 [10>
a3 @ !Not(qureg g=|.0>)

44 % 0.5 |00> + 0.5 [10> + -0.5 |01> + -0.5 [11>
a5 @ Mix(qureg g=[10>)

16 % 1 |01>

a7 I x_1

as @ Not(qureg g=10.>)

19 % 1 |11>

50 @ CPhase(real phi=3.141593,qureg g=|10>)

51 % -1 |11>

52 @ !Not(qureg g=[0.>)

53 % -1 |01>

6. Now we measure (lines 54-55) and we obtain the result (line 56) :

54 @ MEASURE
55 % 1 |01>
56 :Measure: 1

123

5

Conclusion

Quantum Computing is a relative new computation model that implies a new way of thinking algorithms for
getting a maximal advantage of its properties, and it demands to us to understand its characteristics, because
as technology trends show, Quantum Computer is possibly a feature for computers’s next generation.

6

Acknowledgements

The paper was financed by EAFIT University, under the research project number 817407.

References

(1]
2]

AHARONOV, D. Quantum Computation. Eprint: quant-ph/9812037, 1998.

GROVER, L. K. A fast quantum mechanical algorithm for database search. Eprint: quant-ph/9605043,
1996.

GROVER, L. K. Rapid sampling through quantum computing. Eprint: quant-ph/9912001, 1999.
Jozsa, R. Searching in Grover’s algorithm. Eprint: quant-ph/9901021, 1999.

(")MER, B. A Procedural Formalism for Quantum Computing. Master’s thesis, Department of Theorical
Physics, Technical University of Viene, 1998.

RIEFFEL, E., AND PoLAK, W. An Introduction to Quantum Computing for Non-Physicists. Eprint:
quant-ph /9809016, 1998.

SHOR, P. W. Polinomial-time algorithms for prime factorizacion and discrete logarithms on a quantum
computer. Siam Journal on Computing 26, 5 (Octuber 1997), 1484-15090.

SICARD, A., AND VELEZ, M. Algunos elementos introductorios acerca de la computacién cuantica. In
Memorias VII Encuentro de la ERM, Realizado en la Universidad de Antioquia (Agosto 1999), Escuela
Regional de Matematicas. En: Informe de Investigaciéon: ;Maquina de Turing Cuantica Autorrefencial:

Una posibilidad?, Universidad EAFIT, 1999.

WiLLiams, C. P., AND CLEARWATER, S. H. FEzplorations in Quantum Computing. Springer-Telos,
1997.

124

