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Introduction

The A-calculus is a model of computation introduced a few years before
another such model, Turing machines.

@ With Turing machines, computation is expressed by reading from and
writing to a tape, and performing actions depending on the context of
the tape.

@ In contrast in A-calculus one is concerned with functions, and these

may both take other functions as arguments and returns functions as
results.

AETEDT G MTTH I EN R N TENNOET BVl The Barendregt-Geuvers-Klop Conjecture June 2025 4/62



\-calculus

A-terms

Definition 1: The set of \-terms

Let V= {x,y,z,...} be the set of infinite term variables. The set of
A-terms (A) is defined inductevely by:

o If x €V, then x € A.
o If M,N € A, then MN € A.
@ If xeVand M €A, then Ax.M € A.

Remark 1: This definition can be summarized by the following grammar:
A==V | AN AV.A.

Remark 2: The functions in the A-calculus have the property that the
name of the variables are not essential. This can be formalized using
a-conversion or the Barendregt convention.
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\-calculus

Free variables

Definition 2: The set of free variables

The set of free variables of a A\-term can be inductively defined by:
1. FV(x) = {x}.
2. FV(MN) = FV(M)U FV(N).
3. FV(Ax.M) = FV(M)\ {x}.

Example 1:

o FV(Ax.xy) ={y}.
o FV(x(Ax.xy)) = {x,y}.
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Closed terms

Definition 3: Closed terms
A X-term M is closed if FV(M) = 0. J

Remark 3: A closed term is also called a combinator.

Example 2:
@ Axyz.xxy y Axy.xxy are closed A-terms.

@ Ax.xxy is not a closed A\-term.
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Substitution

Definition 4: Substitution
Let N € A. The substitution operation is inductively defined by:
1. x[x:=N]=N.
2. y[x :=N]=y.
3. PQ[x := N] = P[x := N]Q[x := N|.
4. (A\y.P)[x :=N] = Ay.P[x:=N]ify ¢ FV(N) and y # x.
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\-calculus

[S-reduction

Definition 5: Compatible Relation
A relation > on A is compatible iff satisfies the following conditions for all
M,N,Z e A.

o If M = N, then Ax.M = Ax.N for all x.

o If M = N, then MZ = NZ.

o If M = N, then ZM = ZN.
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[S-reduction

Definition 6: S-reduction

The least compatible relation —3 on A satisfying:
(M.P)Q =5 P[x = Q],

is called 5-reduction.

Remark 4:
@ A term of the form (Ax.P)Q is called a -redex.

@ The term P[x := Q] is said to arise by contracting the redex.
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\-calculus

[S-reduction

Definition 7: Multi-step S-reduction

The multi-step (-reduction (—3) is the transitive and reflexive closure
of —B-

Remark 5:

@ The relation -equality or S-conversion (=g) is the least
equivalence relation containing — 3.

@ A [-reduction sequence is a finite or infinite sequence
My —B My —B M, —B .
Example 3:
0 (Ax.xx)(Az.z) =g Ay.y.
o (Ax.x)yz =g y((Ax.x)z).
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\-calculus

£-normal forms

Definition 8: S-normal form

A A-term is in S-normal form (M € NFp) iff there is no N such that
M — 5 N, i. e. M does not contain a [3-redex.

Example 4:
@ Ax.x is in B-normal form.
@ x is in S-normal form.

Remark 6: A term is in normal form iff it is an abstraction Ax.M, where
M is in normal form, or it is xM; M5 - -- M,, where n > 0 and all M; are in
normal form. Even more compact: a normal form is

AV Ym-xMiMs -+ - M, where m, n > 0 and all M; are normal forms.
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S~ ==
£-normal forms

1. If N =5 N, then M[x := N] -3 M[x := N].
2. If M =3 M’ then M[x := N] = M'[x := N].

By induction on M and M — g M’ using properties of substitution.

O
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June 2025 13 /62



\-calculus

Normalizing and Strongly Normalizing

Definition 9: Normalizing and Strongly Normalizing

1. A term M is normalizing (N € WNg) iff there is a reduction
sequence from M ending in a normal form N.

2. A term M is strongly normalizing (M € SNg) if all reductions
sequences starting with M are finite.

Remark 7:
o If M € WNg, we then say that M has the normal form N.
@ We write M € ocog if M ¢ SNg.

@ Any strongly normalizing term is also normalizing but the converse is
not true, as (Axy.y)((Aw.ww)(Aw.ww)) shows.
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A-calculus

Leftmost reductions are normalizing

— —
Notation 1: Let n > 0. If P = Py,..., P,, then we write MP for
MP; --- P,. Similarly, if Z = z, ...,z then we write Az.M for
Azy - zp. M.

N
Remark 8: Any term has exactly one of the following forms Az .xR or

Y
)\?.()\X.P)QR, in which case (Ax.P)Q is called head redex. Any redex
that is not a head redex is called internal. A head redex is always the
leftmost redex, but the leftmost redex in a term is not necessarily a head
redex.

Definition 10
For a term M not in normal form, we write

oM —I>5 N if N arises from M by contracting the leftmost redex.

oM —h>5 N if N arises from M by contracting a head redex.

oM —i>/3 N if N arises from M by contracting an internal redex.

— —- = — S Re;
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\-calculus

Leftmost reductions are normalizing

Lemma 2
L If M Bg N, then Ax.M 25 AV,

2. If M ﬁm N and M is not an abstraction, then ML im NL.
3. 1M B4 N, then Mx := L] By N[x := L].

Proof.
Direct. OJ
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\-calculus

Leftmost reductions are normalizing

Definition 11: Parallel Reductions
Let =3 be the least relation on A such that:
@ x =g x for all variables x.
o If P=3 Q, then Ax.P =3 Ax.Q.
o If Py =43 Q1 and P, =3 @2, then P1P; =3 Q1Qo.
o If PL =5 Q1 and P> =3 @, then (Ax.P1)P> =3 Qi[x 1= Qo]
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\-calculus

Leftmost reductions are normalizing

Lemma 3
1 If M =g N, then M =5 N.
2. If M =3 N, then M —5 N.
3. f M= M and N =3 N', then M[x := N] =5 M'[x := N'].

Proof.
1. is by induction on the definition of M —3 N, and 2., 3. are by
induction on the definition of M =3 M’ O
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\-calculus

Leftmost reductions are normalizing

— - = —
Remark 9: We write P =3 Qif P=P1,...,P,, Q=Q1,...,Qn n >0,
and P; =3 Q; forall 1 <j <n.

Definition 12: Parallel internal reduction

Parallel internal reduction :'>5 is the least relation on A satisfying the

following rules:
—

— o = o >
o P=3Q,then Ax.yP =35 Ax.yQ.
— —
0 lf P=3Q,S=3T and R =3 U, then
— - — e
AX.(Ay.S)RP =5 Ax.(Ay. T)UQ.

Remark 10: If M —>B N, then M :>5 N. Conversely, if M :>5 N, then
I\/I—»BN Also, |fM:>5N then M =5 N.
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\-calculus

Leftmost reductions are normalizing

Definition 13
We write M = N if there are My, My, ..., M, with

M=M s M By By M, L5 N

and M; =3 N for all i € {0,1,...,n}, where n > 0.
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\-calculus

Leftmost reductions are normalizing

Lemma 4
1 If M =4 M, then Ax.M =5 Ax. M.
2. IF M=5 M and N =5 N, then MN =5 M'N'.
3. f M= M and N =3 N, then M[x := N] =3 M'[x := N'].

Proof.

See Sgrensen and Urzyczyn (2006). O

AETEDT G AT ENEETTE N TEN N OET BVl The Barendregt-Geuvers-Klop Conjecture June 2025 21/62



\-calculus

Leftmost reductions are normalizing

Lemma 5
h i
1. If M =3 N, then M =3 L =3 N for some L.
i h i
2. M5 N5 L, then M S5 0 =5 L for some O.

Proof.
See Sgrensen and Urzyczyn (2006). O
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Leftmost reductions are normalizing

I
If M has a normal form, then M — 5 N.

Induction on the length of N and the previous Lemma. O I
o F
I L R I The Barendregt-Geuvers-Klop Conjecture
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\-calculus

Leftmost reductions are normalizing

Definition 14: Reduction Strategy

A reduction strategy F is a map from A-terms to A-terms such that
F(M) = M when M is in normal form, and M —g F(M) otherwise. Such
and F is normalizing if for all M € WNg, there is an i such that F/(M) is
in normal form.

Corollary 1

Define F/(M) = M for each normal form M, and F/(M) = N, where
M —I>5 N, otherwise. Then F; is normalizing.
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\-calculus

Leftmost reductions are normalizing

Definition 15

A reduction sequence is called

@ quasi-leftmost if it contains infinitely many leftmost reductions.

@ quasi-head if it contains infinitely many head reductions.

Corollary 2

Let M be normalizing. Then
1. M has no infinite head-reduction sequence.
2. M has no quasi-head reduction sequence.

3. M has no quasi-leftmost reduction sequence.
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\-calculus

Perpetual reductions

Definition 16

Define Foo, : A — A as follows. If M € NFg, then Foo (M) = M,
otherwise,
N s o = - =
0 Fo(AzxPQR) =Xz xPF(Q)R if P € NFg and Q ¢ NFg.
o Fuu(AZ.00x. P)QR) — AZ.P[x = QIR if x € FV(P) or Q  NF.
o Fu(AZ.0x.P)QR) = AZ.(0.P)Fac(Q)R if x ¢ FV(P) and
Q ¢ NFg.

Remark 11: M —g Foo(M) when M ¢ NFg.

The Barendregt-Geuvers-Klop Conjecture June 2025
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Perpetual reductions

%
Assume Q € SNg or x € FV(P). If P[x := Q]R € SNg, then
(A.P)QR € SN,

See Sgrensen and Urzyczyn (2006).

It M e 003, then FOO(M) € 003.

By induction on M and considering the cases in the definition of
Foo(:)- O
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Perpetual reductions

Definition 17: Perpetual reduction strategy
A reduction strategy F is perpetual iff for all M € oog,

M =5 F(M) =5 F(F(M)) =4 ---

is an infinite reduction sequence starting from M.

Corollary 3

Fo is perpetual.

AETEDT G MTT I ENEETE N TENNOET BVl The Barendregt-Geuvers-Klop Conjecture June 2025 28 /62



\-calculus

Conservation theorem

Definition 18: \/-terms
The set of Al-terms is defined as follows:
@ Every variable is a A/l-term.
@ An application MN is a Al-term iff both M and N are A/-terms.
@ An abstraction Ax.M is a Al-term iff M is a Al-term and x € FV(M)

v

Example 5:
@ Ax.x is a \l-term.

@ Ax.y is not a A/-term.
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Conservation theorem

Theorem 3: The conservation theorem
1. For all AMl-terms M, if M € WNg, then M € SNg.
2. For all Al-terms M, if M € cog and M —3 N, then N € cog.

Proof.

For part 1. assume M € WNg. Then by Theorem 1 M —/»5 N for some
normal form N. Now, note that for all AM/-terms L not in normal form,

L —l>5 Foo(L). Thus N = FX (M) for some k, so M € SNg by Corollary 1.
For part 2., assume M —3 N. If M € oog, then M ¢ SNg, then

M & WNg, by 1. Hence N ¢ WNg, in particular N € cog. O
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Simply Typed \-calculus

Introduction

As we have seen in the first part, the abstract behavior of functions can be
expressed very well by means of A-calculus, however, as Nederpelt and
Geuvers (2014) point out: A-calculus is sometimes too 'liberal’ to conform
to our intuitive demands concerning functions and how they should act as
input-output devices.

Functions are usually thought of as acting on elements belonging to a
certain collection or domain. This notion can be carried out in the
A-calculus by introducing types. These new objects are intended to give
certain restrictions on the input values permitted.
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The set of types

Definition 19: The set T of types

Let B = {«, 3,7,...} be the set of basic types. The set of types T is
defined by:

o Ifa € B, then a € T.
o Ifo,7€T, theno -7 €T.

Remark 12: This definition can be summarized by the following grammar:
T:=B|T-—T.

Example 6:
e[ —n.
o (v =)= (a—=(8—=7)
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Simply Typed \-calculus

Judgement

Definition 20

@ A statement is of the form M : o, where M € A and 0 € T. In such
statement, M is called the subject and o the type.

@ A declaration is a statement with a variable as a subject.
@ A context is a list of declarations with different subjects.

@ A judgement has the form ' M : o, with [ a context and M : o a
statement.
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Simply Typed \-calculus

Derivation rules

Definition 21: Derivation rules

We say that a judgement [ = M : ¢ is valid if it can be generated by the
following derivation rules:

Var: Lx:0obx:0

Abs: MNx:cF-M:71
lFXx:oM:0—1T1

App_rl—l\/l:o—>7' Nr-N:o
' Mr=MN: T
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L St |
[S-reduction

The relation — 4 is the least compatible relation such that

(M :0.P)Q:7 =g Plx:=Q]: .

fr=M:ocand M:0 =g N:o,thenl = N:o. I

See Sgrensen and Urzyczyn (2006).

[} = =
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Simply Typed \-calculus

Normalization

Theorem 5: The weak normalization theorem
Every term of the simply typed A-calculus has a normal form.

Theorem 6: The strong normalization theorem

Every term of the simply typed A-calculus is strongly normalizing.

Proof.

The idea of the proof is to infer the strong property from the weak one.
This can be done with the help of The conservation theorem for the
Al-terms by translating an arbitrary typed A-term M into a Al-term (M)
of the same type, such that ((M) € SNg implies that M € SN (see
Sgrensen & Urzyczyn, 2006, for the details of the proof). O
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Introduction

From the simply typed A-calculus, more general type systems have been
introduced to increase the expressiveness of the A-calculus allowing many
more applications in logic or computer science.

An example of this is the A-cube (Barendregt, 1991), a framework to

investigate the different dimensions in which the calculus of constructions
(Coquand & Huet, 1986) is a generalization of the simply typed A-calculus.
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The )\-cube

Aw AC
S /
A2 : AP2
Aw------- -= APw
//4 /
A AP

Figure 1: Lambda cube. Direction of each arrow is direction of inclusion.
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The )\-cube

Each dimension of the A-cube corresponds to a kind of dependency!
between terms and types:

@ x-axis (—): types that can depend on terms.
@ y-axis (1): terms that can depend on types.
@ z-axis ('): types that can depend on other types.

The different ways to combine these three dimensions yield the 8 vertices
of the cube, each one corresponding to a different type system.

"Here dependency means the capacity of a term or type to bind a term or type:
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The )\-cube

A, is the simply typed A-calculus (Church, 1940).

A2 is the polymorphic system or second order typed A-calculus and is
a subsystem of the system F (Girard, 1972).

Aw is essentially the system Fw of Girard (1972).

AP corresponds to one the systems in the family AUTOMATH

languages (De Bruijn, 1980). It also appears under the name LF in
Harper, Honsell, and Plotkin (1993).
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The )\-cube

@ AP2 is studied in Longo and Moggi (1988).

@ A\C is one of the versions of the theory of constructions introduced by
Coquand and Huet (1986).

@ )\w is related to the POLYREC system studied by De Lavalette
(1985).

@ M\Pw seems not to have been studied before.
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Pure type systems

The method of generating the systems in the A-cube has been generalized
independently by Berardi (1990) and Terlouw (1989) which resulted in the
notion of generalized type systems (GTS) or pure type systems (PTS).

The success of the PTS is concerned with logic thanks to the result of the
so called propositions-as-types interpretation.
Definition 23: Pure type systems
A PTS is a triple (S,.A, R) where:
1. S is a set of sorts.
2. AC S x Sis a set of axioms.
3. RCSE xS xS is a set of rules.
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Pure type systems

Definition 24: The set of variables

For each s € S, let V5 denote the countable infinite set of variables such
that Vs NVy = () when s # 5" and let V = USVS.
se

Definition 25: The set of terms
The set 7 of terms is given by the following syntax:

T o= V|S|TTIAV : T.TINV : T.T.
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Pure type systems

Definition 26: (-reduction
The least compatible relation —3 on 7 satisfying:

(Ax : AM)N —5 M[x := N]

is called S-reduction.

Remark 13: The concepts of statement, declaration, context and
judgement are defined as for the A_,.
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Pure Type Systems

Pure type systems

A PTS, denoted by A\S, is determined by the specification of (S, .4, R).
The derivation rules for PTS are defined by the following axioms and rules:

Axiom: F 51 : 5 if (s1,5) € A.

N-A:s |

Start: F,x:AI—x:AIfXEVS and x ¢ dom(I").

NrN-B:C TFA:s
Nx:AFB:C

Weakening: if x € Vs and x ¢ dom(T).

NA:s Nx:AFB:s
Product: if (s1,52,53) € R.
N=(Mx:AB):s3
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Pure Type Systems

Pure type systems

r-F:(Mx:AB) TFra:A

Application:
PP I+ Fa: B[x:= 3]

Mx:AFb:B TH({x:AB):s

N=-Xx:Ab:lMx:AB
. ! .

Conversion: r-A:B TFHB 'SifBzg B
r-A: B

Abstraction:
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Pure type systems

Example 7: The system Ax is defined by:
1. § = {x}.
2. A={(x,%)}.
3. R={(xx)}.

Example 8: The A-cube consists of eight PTS AS where:
1. §={x0}.
2. A={(x,0)}.
3. {(x,%)} TR C{(x, %), (O x%),(x,0),(00)}.

The name of each system and its associated set of rules is given in the
following table.
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Pure Type Systems

Pure type systems

A | (%)

A2 | (%,%) | (O, %)

Aw | (*, %) (O0,0)

Aw | (x,%) | (O,%) | (E5,0)

AP | (%,%) (x,0)
AP2 | (x,%) | (O, %) (x,0)
APw | (*, %) (O0,0) | (x,0)
AC | (x,%) | (O,%) | (O0,0) | (x,0)

Table 1: The systems of the A-cube with their corresponding set of rules.
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Pure Type Systems

Pure type systems

Example 9:
@ The system AHOL is defined by:
1. §={+0A}.
2. A={(x0),(0,0)}.
3. R ={(*%),(0,x%), (0,0}
@ The system AU~ is defined by:
1. 8= {+0A}.
2. A={(x0),(0,0)}.
3. R ={(x%),(d,x*),(3,0),(A,0)}.
@ The system AU is defined by:
1. 8= {+0A}.
2. A={(*0),(0,0)}.
3. R = {(*),(0,x%),(3,0),(A,*),(A,0)}.
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The Barendregt-Geuvers-Klop conjecture

This conjecture was presented by Barendregt at Type Lambda-Calculi and
Applications 1995.

The Barendregt-Geuvers-Klop conjecture

For every PTS, weak normalization implies strong normalization.

Remark 14: This is motivated primarily by a collection of results that

derive strong normalization from weak normalization from systems in the
A-cube.

Example 10:
@ All the systems of the A-cube are strongly normalizing.

@ The system Ax is the simplest PTS which is not normalizing.
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There are two natural techniques based on type-preserving translations for
proving strong normalization from weak normalization:

1. The first one is to define a translation from expressions to
Al-expressions. Strong normalization then readily follows from weak
normalization by The Conservation Theorem for the untyped
A-calculus (Sgrensen, 1997; Xi, 1997).

2. The second technique is to define an infinite-reduction-path-preserving
translation to a weak system for which the conjecture is known to
hold. Then the conjecture can be shown to hold for the full system
(Geuvers & Nederhof, 1991; Harper & Lillibridge, 1993).
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Some advances in the conjecture:

@ Barthe, Hatcliff, and Sgrensen (2001) extended the ideas of Sgrensen
(1997) to a class of PTS: the Generalized Non-Dependent PTS in
which types do not depend on terms and includes A\, A2, Aw, A\w,
AHOL, AU and AU~. In this class, the Barendregt-Geuvers-Klop
conjecture holds.

@ Harper and Lillibridge (1993) showed that some extensions of
arbitrary PTS with additional sorts and rules, which preserve the
normalization property, can be used to provide results about the
conjecture of some PTS.

@ Mull (2022) showed that by introducing a new class of PTS: Tiered
PTS the questions about normalization can be tackle easier. In fact,
Mull presented a simpler and more approachable proof of the main
result of Barthe et al. (2001).
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The Barendregt-Geuvers-Klop Conjecture

Idea: Use the concept of Al-terms to proof the conjecture for all PTS or a
class of them, taking advantage of The conservation theorem of untyped
A-calculus. To do this we can take two possible approaches:
1. Define translations from expressions to Al expressions extending the
previous results of Sgrensen (1997) and Barthe et al. (2001).
2. Extend the definition of Al-expressions, as it was done by
Cartagena-Cartagena (2023) for the A-cube, and generalize The
conservation theorem.
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Thank you!
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