An Introduction to Rocq and the Hydra Battle

A Journey into Interactive Theorem Proving and Termination Proofs

John Alejandro Gonzalez-Gonzélez!
Andrés Sicard-Ramirez?

L Mathematical Engineering, Universidad EAFIT, jagonzale4@eafit.edu.co

2School of Applied Sciences and Engineering, Universidad EAFIT, asr@eafit.edu.co

May, 2025

Outline

An Introduction to Rocq

Rocq Examples

Lists and Trees

Well-Founded Relations

Case Study: The Hydra Battle

What is Rocq?

Rocq (previously known as Coq) is an interactive theorem prover based on constructive
type theory. It embodies the Curry—Howard correspondence, where:

P Types correspond to logical propositions.

» Terms (i.e., programs) correspond to proofs.
As a consequence:

» Type checking serves as proof verification.

Rocq supports defining functions, stating theorems, and interactively constructing proofs
using tactics.

Sets, Types, and Propositions

In Rocq's type theory (inspired by Martin-L&f), we distinguish between three main cat-
egories:
Type A general notion used to classify all meaningful constructs.

Set A type for computational data, like nat, 1ist, or tree. Used for
defining programs and data structures.
Prop A type for logical propositions, where inhabitants are proofs rather than
data.
Both Set and Prop are Type, but they serve different purposes and are not
comparable.

Boolean Logic

Booleans can be defined as non-recursive type. Logic operators can be encoded func-
tionally:

1 Inductive bool : Set := true | false.

The type bool represents the set {true, false}, which models the propositions { True, False}
in classical logic. We can then define logical operations like not as functions:

1 Definition negate (b : bool) : bool :=
2 match b with

3 | true => false

4 | false => true

5 end.

Coq Notation for Readability

Coq allows you to introduce custom notation to make proofs clearer and closer to
mathematical style. These notations are defined with the Notation command and help
avoid repeatedly writing constructors.

Example definitions:

1 Notation "O" := 0.
2 Notation "1" := (S 0).
3 Notation "2" := (S (S 0)).

4+ Notation "3" (s (s (58 M.
¢ Notation "x + y" := (plus x y)
7 (at level 50, left associativity).

This feature is part of Coq's syntax extensions. For convenience, the standard library
(in Coq.Init.Nat) already provides notations up to arbitrarily large numerals (0", ‘1°,
‘2%, ...) and the familiar infix "+" for addition.

Peano Natural Numbers

Numbers in Rocq can be defined from scratch:

1 Inductive nat : Set :=
2 | 0
3 | S (n : nat).

5 Fixpoint plus (m n : nat) : nat :=

6 match m with

7 [O =>n

8 | Sm' =>38 (plus m' n)
9 end.

Peano numbers:

N = {0, 5(0), S(5(0)), ...}

where S(n) is the successor function. The recursive plus function models addition.

Proof by Simplification

Some equalities can be shown directly by simplification:

1 Example plus_1_2 : plus 1 2 = 3.
2 Proof. simpl. reflexivity. Qed.

Simple use of Rocq’s simplification engine.

Classical View:
In Peano Arithmetic:

S5(0)+5(5(0)) =5(5(5(0))) = 1+2=3
This is a computation using the recursive definition of addition:

1+2 = S(0) + S(5(0))
= 5(5(5(0))) =3

Verified by unfolding the definition of + on natural numbers.

Proof by Induction

Classical View:
Let + be defined recursively:

O+n=n (base case)
S(m')+n=S(m +n) (recursive case)

We want to prove by induction:
VneN, n+0=n

Base case: 0+0=0
Inductive step: Assume n+ 0 = n, then:

S(n")+0=S5(n"+0) = S(n)

Therefore, the property holds for all n € N.

Proof by Induction

For universally quantified properties, use structural induction:

1 Theorem plus_n_0 : forall n : nat, n + O = n.
2 Proof.

3 induction n as [| n' IH].

4 - reflexivity.

5 - simpl. rewrite IH. reflexivity.
6 Qed.

Key pattern: base case + inductive hypothesis.

Using Lemmas
Given previously proven lemmas:

1 Lemma plus_n_ 0 : forall n :nat, n =n + 0.

2 Lemma plus_n_Sm : forall mn : nat, S (m + n) =m + S n.
We can simplify proofs:

1 Theorem plus_comm : forall mn : nat, m + n = n + m.

2 Proof.

3 intros m n.

1 induction m as [| m' IH].

5 - simpl. rewrite <- plus_n_0. reflexivity.
6 - simpl. rewrite IH.

7 rewrite <- plus_n_Sm. reflexivity.

s Qed.

plusn.O: VneN, n+0=n
plusn.Sm: VnmeN, S(n+m)=n+S(m)

plus_.comm: YnmeN, n+m=m-+n

Lists in Rocq

Rocq provides a built-in list type, defined inductively:
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
We can then define functions over lists, for example, concatenation:

Fixpoint app {A : Type} (11 12 : list A) : list A :=
match 11 with

| nil => 12
| cons x t => cons x (app t 12)
end.

Notation for convenience:

Notation "x :: 1" = (cons x 1) (at level 60, right associativity).
Notation "[]" := nil.
Notation "11 ++ 12" := (app 11 12) (at level 60, right associativity).

Now you can write expressions like: 1 :: 2 :: [1 ++ [3; 4].

Rose Trees and Height in Rocq

Define a rose (multi-way) tree type:

Inductive RoseTree : Type :=

| Node : nat -> list RoseTree -> RoseTree.
Measure its height (max depth of nodes):
Fixpoint height (t : RoseTree) : nat :=

match t with

| Node _ children =>

1 + fold_right max O (map height children)
end.

Rose Tree Example with Height
Consider this rose tree of height 3:

Figure: A binary tree with 7 nodes and height 3.

Its Coq representation as a rose tree:
Definition example_rose : RoseTree :=
Node 1 [
Node 2 [Node 4 []; Node 5 []];
Node 3 [Node 6 []; Node 7 []1]
1.
Compute height example_rose. (* = 3 *)

Well-Foundedness and Accessibility

To prove termination in Rocq, we use the concept of well-founded relations.

Definition (Well-founded): A relation R on a set A is well-founded if there is no
infinite descending chain:
ao=ay>-ax -

where each aj11 R a;.
Definition (Accessibility):

An element a € A is accessible with respect to R if every R-smaller element of a is also
accessible.

In Rocq:
» Acc R a means ais accessible under relation R.

> A relation is well-founded if all elements are accessible: well_founded R :=
forall a, Acc R a.

Example: < on Natural Numbers is Well-Founded
The usual less-than relation on nat is well-founded:

Fact: 1t (i.e., <) on N is well-founded.
Require Import Coq.Arith.Wf_nat.

Check 1t_wf.
(* Tt_wf : well_founded 1t *)

What does this mean?

> 1t_wf proves: for every n, there are no infinite descending chains:
n>n >ny>---
» Therefore, every n is accessible with respect to <:
Acc 1t n

» Enables defining recursive functions that decrease on n

The Hydra Battle

The Hydra battle is a famous history from Greek mythology, where Hercules faces the
learnean Hydra, a serpent-like creature with multiple heads. Each time a head is cut
off, two more grow back in its place.

Figure: Hercules and the Hydra of Lerna (1876). Oil on canvas, 179.3 x 154 cm. Art Institute
of Chicago. Gustave Moreau (1826-1898).

Looking Ahead

To Explore:

1. Modeling the Hydra Battle: Formalizing the cutting—growing rules as inductive
definitions and transition relations in Rocq.

2. Exploring Variant Dynamics: Analyzing how changing growth factors, cut rules,
or tree structures affects termination behavior.

3. Establishing Termination Proofs: Constructing well-founded measures
(lexicographic, ordinals, etc.) that decrease with every step.

Further Reading / Resources

[The Rocq (formerly Coq) development team, “Rocq Prover,”
https://rocq-prover.org/

@ B. Pierce et al., “Basics,” in Software Foundations,
https://softwarefoundations.cis.upenn.edu/1f-current/Basics.html

A. Chlipala, “Universes,” in Certified Programming with Dependent Types,
http://adam.chlipala.net/cpdt/html/Universes.html

B

[§ YouTube: “The Hydra vs. Hercules — Numberphile,”
https://www.youtube.com/watch?v=prURA1i8Qj4

[

[

P. Casteran, "Hydras&Co,"
https://rocq-community.org/hydra-battles/doc/hydras.pdf

L. Kirby and J. Paris, “Accessible independence results for Peano arithmetic,”
Bull. London Math. Soc., vol. 14, pp. 285-293, 1982.

https://rocq-prover.org/
https://softwarefoundations.cis.upenn.edu/lf-current/Basics.html
http://adam.chlipala.net/cpdt/html/Universes.html
https://www.youtube.com/watch?v=prURA1i8Qj4
https://rocq-community.org/hydra-battles/doc/hydras.pdf

	An Introduction to Rocq
	Rocq Examples
	Lists and Trees
	Well-Founded Relations
	Case Study: The Hydra Battle

