Proving Termination of the Hydra Battle in Rocq A Journey into Interactive Theorem Proving and Termination Proofs

John Alejandro González-González¹ Andrés Sicard-Ramírez²

¹Mathematical Engineering, Universidad EAFIT, jagonzale4@eafit.edu.co

 $^2 S chool\ of\ Applied\ Sciences\ and\ Engineering,\ Universidad\ EAFIT,\ asr@eafit.edu.co$

July, 2025

Outline

Lists and Trees

Case Study: The Hercules Hydra Battle

Mathematical Hydra Battle

Sketch of the Termination Proof

Conclusion and Future Work

Lists in Rocq

Rocq provides a built-in list type, defined inductively:

We can then define functions over lists, for example, concatenation:

Now you can write expressions like: 1 :: 2 :: [] ++ [3; 4].

Notation for convenience:

```
Notation "x :: 1" := (cons x 1) (at level 60, right associativity). Notation "[]" := nil. Notation "l1 ++ l2" := (app l1 l2) (at level 60, right associativity).
```

Rose Trees and Height in Rocq

Rose Tree Example with Height

Consider this rose tree of height 3:

Figure: A binary tree with 7 nodes and height 3.

```
Its Coq representation as a rose tree:
Definition example_rose : RoseTree :=
  Node 1 [
    Node 2 [Node 4 []; Node 5 []];
    Node 3 [Node 6 []; Node 7 []]
  ].
Compute height example_rose. (* = 3 *)
```

The Hercules Hydra Battle

The Hercules Hydra Battle is a famous history from Greek mythology, where Hercules faces the learnean Hydra, a serpent-like creature with multiple heads. Each time a head is cut off, two more grow back in its place.

Figure: Hercules and the Hydra of Lerna (1876). Oil on canvas, 179.3×154 cm. Art Institute of Chicago. Gustave Moreau (1826-1898).

A Mathematical Version of the Hydra Battle

- A mathematical version of the Hydra myth. [1]
- ▶ Start with a rooted tree (the Hydra). Leaves are "heads".
- Choose a head, cut it off.
- If the cut head was height 1 from the root, the head is just removed.
- ▶ If the cut head was height > 1 from the root:
 - Let G be its grandparent node.
 - Add *n* new branches to *G*, each identical to the node removed.
- ▶ The game continues until there's only one head left (the root).

We want to prove that the game eventually terminates. Given any hydra, the game eventually terminates.

Sketch of the Termination Proof (Based on Rocq Formalization)

We prove termination of the Hydra game using a lexicographic measure over lists of natural numbers.

Modeling the Hydra: Counts by Depth

We represent each Hydra tree by a *list of naturals*, where the i-th element is the number of nodes at depth i.

```
Fixpoint merge_counts (11 12 : list nat) : list nat :=
 match 11, 12 with
 | [], 1 => 1
 | 1, [] => 1
  | x1 :: xs1, x2 :: xs2 => (x1 + x2) :: merge_counts xs1 xs2
  end.
Fixpoint _count_levels (t : RoseTree) : list nat :=
 match t with
  let child_counts := map _count_levels children in
     let merged := fold_left merge_counts child_counts [] in
     1 :: merged
 end.
Definition count_levels (t : RoseTree) : list nat := rev (_count_levels t).
```

Internal Cut: step_internal

An *internal* Hydra step cuts a head at depth > 1, redistributing copies to its grandparent:

```
Inductive step_internal (n : nat) : list nat -> list nat -> Prop :=
 StepInternalLong:
    forall prefix x y suffix,
      \mathbf{x} > 0 \rightarrow
      length suffix >= 1 ->
      step_internal n (prefix ++ x :: y :: suffix)
                          (prefix ++ (x - 1) :: (v + n) :: suffix)
 StepInternalTwo :
    forall prefix x y,
      x > 0 ->
      step_internal n (prefix ++ x :: [y])
                          (prefix ++ (x - 1) :: [v]).
```

We decrease the count at the cut depth and increase at the parent's depth.

Beheading at height > 1 from the root

[1; 2; 1] [0; 4; 1]

test_step_long

Beheading at height = 1 from the root

[0; 4; 1]

[0; 3; 1]

 $test_step_two$

Final Cut: step_final

A final step removes a last head when only one depth remains:

```
Inductive step_final : list nat -> list nat -> Prop :=
| StepFinal :
    forall prefix x,
        x > 0 ->
        step_final (prefix ++ [x]) (prefix ++ [x - 1]).
```

This simply subtracts one from the last nonzero entry.

Beheading at the root

Step Definition: step

We define a step as either an internal or final move:

```
Inductive step (n : nat) : list nat -> list nat -> Prop :=
| Step_internal_case :
    forall 11 12,
        step_internal n 11 12 ->
        step n 11 12
| Step_final_case :
    forall 11 12,
        step_final 11 12 ->
        step n 11 12.
```

This captures both types of moves in the Hydra game.

Termination: step_done

An *empty* list indicates the Hydra is done:

```
Inductive step_done : list nat -> Prop :=
| StepDoneEmpty :
    step_done []
| StepDoneNonEmpty :
    forall 1,
        1 <> [] ->
        (forall x, In x 1 -> x = 0) ->
        step_done 1.
```

This means all heads have been cut, and no more moves are possible.

Complete Transition: step or done

We combine steps and termination tests:

```
Inductive step_or_done (n : nat) : list nat -> list nat -> Prop :=
| Step_case :
    forall 11 12,
        step n 11 12 ->
        step_or_done n 11 12
| Done_case :
    forall 1,
        step_done 1 ->
        step_or_done n 1 1.
```

Thus each configuration either evolves or is declared done.

Length Preservation Lemmas

```
Both internal and final moves preserve the list length:

Lemma step_internal_preserves_length :
forall n 11 12, step_internal n 11 12 -> length 11 = length 12.

Lemma step_final_preserves_length :
forall 11 12, step_final 11 12 -> length 11 = length 12.

Theorem step_preserves_length :
forall n 11 12, step n 11 12 -> length 11 = length 12.

This invariant ensures our lexicographic comparison is well-defined.
```

Lexicographic Measure: lex_lt

Define a well-founded lex order over lists of naturals:

We compare first on heads, then recursively on tails.

Lexicographic Comparison: [1; 2; 3] < [1; 2; 5]

Each Step Decreases the Measure

Prove that every move strictly lowers the lex order:

```
Lemma step_internal_decreases_lex :
 forall n 11 12.
   step_internal n 11 12 ->
    lex lt 12 11.
Lemma step_final_decreases_lex :
 forall 11 12,
    step_final 11 12 ->
    lex lt 12 11.
Theorem step_decreases_measure :
 forall n l1 l2.
    step n 11 12 ->
    lex_lt 12 11.
```

This guarantees progress towards termination under a well-founded relation. But, is it well-founded?

Proving Well-Foundedness of lex_lt

To complete the termination proof, we need to establish that lex_lt is well-founded: Theorem lex_lt_wf : well_founded lex_lt.

Status: Pending work

Once proven, combined with our decrease lemma, this establishes that the step relation is well-founded, guaranteeing termination.

Progress Property: Every Hydra Can Make a Step

We also need to prove that every non-terminal Hydra configuration can make progress:

```
Theorem hydra_progress :
  forall n 11,
    exists 12, step_or_done n 11 12.
```

Proof strategy:

- Case analysis on the structure of the list 11
- If 11 satisfies step_done, then step_or_done n 11 11
- Otherwise, construct a valid step using step_internal or step_final

Status: Pending work

This property ensures that the game never gets "stuck" in a non-terminal state.

Complete Termination Theorem

Combining all our results yields the main theorem:

Hydra Battle Termination

For any natural number n and any initial Hydra configuration l_0 , the Hydra battle terminates in finitely many steps.

Proof outline:

- lex_lt is well-founded (pending)
- 2. Every step decreases the lexicographic measure (proven)
- 3. Every configuration can make progress (pending)
- 4. Therefore, no infinite sequence of steps exists

This formalizes the classical result that Hercules always wins the (simplified) Hydra battle, regardless of the initial configuration or the value of n.

Further Reading / Resources

- The Rocq (formerly Coq) development team, "Rocq Prover," https://rocq-prover.org/
- B. Pierce et al., "Basics," in Software Foundations, https://softwarefoundations.cis.upenn.edu/lf-current/Basics.html
- A. Chlipala, "Universes," in *Certified Programming with Dependent Types*, http://adam.chlipala.net/cpdt/html/Universes.html
- YouTube: "The Hydra vs. Hercules Numberphile," https://www.youtube.com/watch?v=prURA1i8Qj4
- P. Casteran, "Hydras&Co," https://rocq-community.org/hydra-battles/doc/hydras.pdf
- L. Kirby and J. Paris, "Accessible independence results for Peano arithmetic," *Bull. London Math. Soc.*, vol. 14, pp. 285–293, 1982.