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What is Category Theory?

Category theory is a branch of mathematics that:

• Studies connections between different ideas.

• Allows us to understand order and structures.

• Focuses on relationships.

• Helps to see under which context things are equivalent.
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Commutative Diagrams

Idea

A commutative diagram is a diagram in which all paths that start and end at the same point determine the

same result.

Example

Marinilla Rionegro

Guarne Medelĺın
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What is a Category?

Definition (Category)

A category C consists of [6]:

• A collection of objects, Obj(C), denoted by letters A,B,C , etc.

• A collection of arrows or morphisms, Mor(C), denoted by letters f , g , h, etc.

• Two maps, dom, cod : Mor(C) → Obj(C), assigning to each arrow f its domain dom(f ) and codomain

cod(f ). For an arrow f with domain A and codomain B, we write f : A → B.

• For each pair of objects A,B, we define the set

Hom(A,B) := {f ∈ Mor(C) | f : A → B}

which we call a Hom-set.
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What is a Category?

Definition (Category)

• For any triple of objects A,B,C , the composition of morphisms,

◦ : Hom(A,B)×Hom(B,C) → Hom(A,C).

Given f ∈ Hom(A,B) and g ∈ Hom(B,C), we write g ◦ f to denote the composition g after f .

A B Cf

g◦f

g

• For each object A, an identity arrow, 1A : A → A.
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What is a Category?

Definition (Category)

Such that the following axioms hold:

• Identities: For any morphism f : A → B, we have

f ◦ 1A = f = 1B ◦ f .

A A

B B

1A

f ◦1A
f

1B◦f

1B
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What is a Category?

Definition (Category)

• Associativity: For any morphisms f : A → B, g : B → C , h : C → D, we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

A B C Df

g◦f

g

h◦g

h

7 / 36



Example: Set

Set is the category in which:

• Objects: Sets.

• Arrows: Functions between sets.

• Identity arrow: Is the identity function

1X : X → X

x 7→ x

• Composition: Is the composition of functions. If f : X → Y and g : Y → Z are two functions, then

g ◦ f : X → Z

x 7→ g(f (x))

is their composite function.
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Example: Natural Numbers

Starting from the natural numbers, we can construct a category as follows:

• Objects: Natural numbers 0, 1, 2, 3, . . ..

• Arrows: A −→ B whenever A ≤ B.

• Identity: Is given by the reflexivity of ≤, that is, every natural number is less than or equal to itself.

• Composition: Is given by the transitivity of ≤, that is, if a ≤ b and b ≤ c then a ≤ c.

What does this category look like?

0 1 2 3 . . .
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What is Agda?

• Dependently typed programming language.

• Proof assistant.

• It is based on intuitionistic type theory.
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Agda: Basic Concepts

Inductive definition of N
In Agda we can define the set N inductively as follows

1 data Nat : Set where

2 zero : Nat

3 suc : Nat → Nat

What is a term of this type?

If we want to write the number 7, we can do this

1 x : Nat

2 x = suc (suc (suc (suc (suc (suc (suc zero))))))
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Agda: Basic Concepts

What is a term of this type?

Since writing numbers in that way is inconvinient we can use flags to make our lifes easier.

1 {-# BUILTIN NATURAL Nat #-}

2 y : Nat

3 y = 7

Operations on N
Since we have defied N we can define addition inductively as follows

1 + : Nat → Nat → Nat

2 zero + n = n

3 (suc m) + n = suc (m + n)
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Agda: Basic Concepts

Owr first proof

Lets show that 2 + 3 = 5

1 : 2 + 3 ≡ 5

2 =

3 begin

4 2 + 3

5 ≡⟨ ⟩ -- is shorthand for

6 (suc (suc zero)) + (suc (suc (suc zero)))

7 ≡⟨ ⟩ -- inductive case

8 suc ((suc zero) + (suc (suc (suc zero))))

9 ≡⟨ ⟩ -- inductive case

10 suc (suc (zero + (suc (suc (suc zero)))))

11 ≡⟨ ⟩ -- base case

12 suc (suc (suc (suc (suc zero))))

13 ≡⟨ ⟩ -- is longhand for

14 5

15
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Formalization: Category

Now that we have all the background needed, we are able to start formalizing things. First of all we need to

define what is a category in Agda

1 record Category : Set 1 where

2

3 field

4 Obj : Set

5 Hom : Obj → Obj → Set

6

7 id : ∀ {A} → Hom A A

8 comp : ∀ {A B C} → Hom A B → Hom B C → Hom A C

9

10 assoc : ∀ {A B C D} (f : Hom A B) (g : Hom B C) (h : Hom C D) →
11 comp f (comp g h) ≡ (comp (comp f g) h)

12 idL : ∀ {A B} (f : Hom A B) → comp id f ≡ f

13 idR : ∀ {A B} (f : Hom A B) → comp f id ≡ f
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Formalization: First Example

Category of N and ≤
Previously we saw that there is a category whose objects are the natural numbers N and the arrows are given

by the relation ≤. First of all we need to define what does it mean for a natural number to be less than or

equal to other natural number.

1 variable

2 k l m n : Nat

3

4 data ≤ : Nat → Nat → Set where

5 ≤-zero : zero ≤ n

6 ≤-suc : m ≤ n → suc m ≤ suc n
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Formalization: First Example

Category of N and ≤
Recall that in this category the identity arrows are given by the reflexivity of the relation ≤ so

1 ≤-refl : {n : Nat} → n ≤ n

2 ≤-refl {n = zero} = ≤-zero

3 ≤-refl {n = suc k} = ≤-suc ≤-refl

Composition is given by the transitivity of the relation ≤ so

1 ≤-trans : {k l m : Nat} → k ≤ l → l ≤ m → k ≤ m

2 ≤-trans ≤-zero l≤m = ≤-zero

3 ≤-trans (≤-suc k≤l)(≤-suc l≤m) = ≤-suc (≤-trans k≤l l≤m)
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Formalization: First Example

We already have the objects and the arrows of the category. What we must do now is prove that the axioms

of a category are satisfyed.

Left and right identity

1 -- left identity law

2 ≤-IdL : {m n : Nat} → (f : m ≤ n) → (≤-trans ≤-refl f) ≡ f

3 ≤-IdL ≤-zero = refl

4 ≤-IdL (≤-suc f) = cong ≤-suc (≤-IdL f)

5

6 -- right identity law

7 ≤-IdR : {m n : Nat}(f : m ≤ n) → (≤-trans f ≤-refl) ≡ f

8 ≤-IdR ≤-zero = refl

9 ≤-IdR (≤-suc f) = cong ≤-suc (≤-IdR f)
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Formalization: First Example

Associativity

Lets show the associativity

1 ≤-assoc : {k l m n : Nat} → (f : k ≤ l) (g : l ≤ m ) (h : m ≤ n)

2 → ≤-trans f (≤-trans g h) ≡ ≤-trans (≤-trans f g) h

3 ≤-assoc ≤-zero g h = refl

4 ≤-assoc (≤-suc f)(≤-suc g)(≤-suc h) = cong ≤-suc (≤-trans -assoc f g h)
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Formalization: First Example

Putting all together

We have shown that all the needed properties hold for this category. Now we are able to fill all the gaps in the

definition of a Category

1 natCat : Category

2 natCat = record

3 { Obj = Nat

4 ; Hom = ≤
5 ; id = ≤-refl

6 ; comp = ≤-trans

7 ; assoc = ≤-assoc

8 ; idL = ≤-IdL

9 ; idR = ≤-IdR

10 }
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Example: Monoids

Definition (Monoid)

A monoid (M, ·) is a set M together with a binary operation

· : M ×M → M

(a, b) 7→ a · b

which satisifes the following axioms:

• Associativity: a · (b · c) = (a · b) · c, for all a, b, c ∈ M.

• Identity existence: there is a unique e ∈ M such that a · e = a = e · a, for all a ∈ M.
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Example: Monoids

A monoid (M, ·) can be seen as a category with one object. Let M be a category defined by:

• There is just one object, say ⋆.

• Any element a ∈ M is an arrow a : ⋆ → ⋆ in M.

• Composition of arrows is the operation of the monoid, that is, if a, b ∈ Ar(M) then a ◦ b = a · b.
• The identity arrow 1⋆ is defined to be the monoid identity e.

What does this category look like?

If a, b, c ∈ M then

⋆ ⋆

⋆ ⋆

e
a

b·a
b

c·b

c
e
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Example: Monoids

(N,+)

The category associated with this monoid is that one where:

• The object is ⋆.

• The arrows are the natural numbers: 0, 1, 2, . . ..

• The identity arrow is 0.

• The composition of arrows is given by the addition of natural numbers +.

(N, ·)
The category associated with this monoid is that one where:

• The object is ⋆.

• The arrows are the natural numbers: 0, 1, 2, . . ..

• The identity arrow is 1.

• The composition of arrows is given by the multiplication of natural numbers ·.
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Formalization: Monoid as a Category

Definition of monoid

We now formalize the definition of a monoid. This serves as a first step toward interpreting monoids as

categories.

1 record Monoid : Set 1 where

2 field

3 Carrier : Set

4 * : Carrier → Carrier → Carrier

5 ε : Carrier

6

7 field

8 monAssoc : ∀ {x y z} → x * (y * z) ≡ (x * y) * z

9 monIdL : ∀ {x} → ε * x ≡ x

10 monIdR : ∀ {x} → x * ε ≡ x
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Formalization: Monoid as a Category

Now the data of the category

Objects and morphisms

1 mObj : ∀ (M : Monoid) → Set

2 mObj M = ⊤
3

4 mHom : ∀ (M : Monoid) → ⊤ → ⊤ → Set

5 mHom M = Carrier M

Composition and identity

1 mComp : ∀ (M : Monoid) → (a b : Carrier M) → Carrier M

2 mComp M = * M

3

4 mId : ∀ (M : Monoid) → Carrier M

5 mId M = ε M
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Formalization: Monoid as a Category

And the axioms

Left and right identity

1 mIdL : ∀ (M : Monoid) → (a : Carrier M) → * M (mId M) a ≡ a

2 mIdL M f = monIdL M

3

4 mIdR : ∀ (M : Monoid) → (a : Carrier M) → * M a (mId M) ≡ a

5 mIdR M a = monIdR M

Associativity

1 mAssoc : ∀ (M : Monoid) → (a b c : Carrier M)

2 → * M a ( * M b c) ≡ * M ( * M a b) c

3 mAssoc M a b c = monAssoc M
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Formalization: Monoid as a Category

Putting all together

1 cat : ∀ (M : Monoid) → Category

2 cat M = record

3 { Obj = mObj

4 ; Hom = mHom

5 ; id = mId

6 ; comp = * M

7 ; assoc = mAssoc

8 ; idL = mIdL

9 ; idR = mIdR

10 }
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Other Examples

• Vect: Objects are vector spaces and morphisms are linear transformations.

• Pos: Objects are partially ordered sets and morphisms are monotonic functions.

• Top: Objects are topological spaces and morphisms are continuous maps.

• Grp: Objects are groups and morphisms are group homomorphisms.
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What is a functor?

Functors are the notion of morphisms between categories.

Definition (Functor)

Let C and D be two categories. A functor F : C → D consists of two morphisms:

• Object morphism: F0 : Obj(C) → Obj(D), which assigns to each object A ∈ C an object F0(A) ∈ D.

• Arrow morphism: F1 : Ar(C) → Ar(D), which assigns to each morphism f : A → B in C a morphism

F1(f ) : F0(A) → F0(B) in D.

These must satisfy the following conditions:

• Identity preservation: F1(1A) = 1F0(A) for all objects A in C.

• Composition preservation: F1(g ◦ f ) = F1(g) ◦ F1(f ) for all composable morphisms f : A → B,

g : B → C in C.
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Formalization: Functor

The last formalization we present is that of a functor

Functor

1 record Functor (C1D1 : Category) : Set 1 where

2

3 private

4 module C = Category C1

5 module D = Category D1

6

7 field

8 F0 : C.Obj → D.Obj

9 F1 : ∀ {A B} (f : C.Hom A B) → D.Hom (F0 A) (F0 B)

10

11 id : ∀ {A} → C.Hom A A ≡ D.Hom (F0 A) (F0 A)

12 comp : ∀ {A B C} (f : C.Hom A B) (g : C.Hom B C) → F1 (C.comp f g)

13 ≡ D.comp (F1 f) (F1 g)
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Future Work

• Formalize examples of functors.

• Prove some theorems about categories.

• Build more examples.
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Thanks!
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Appendix
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Agda: Equality and Proofs

Propositional equality ≡ and constructor refl

In Agda, propositional equality is defined as:

1 data ≡ {A : Set} (x : A) : A → Set where

2 refl : x ≡ x

• x ≡ y is the type of proofs that x and y are equal.

• refl is the canonical proof that any value is equal to itself.

Function congruence: cong

1 cong : ∀ {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y

• If x ≡ y , then applying the same function f to both sides preserves equality: fx ≡ fy .
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Code Repository

The code used in this presentation is available at the following GitHub repository:

Formalization of Category Theory in Agda

https://github.com/jmramirez1204/category-theory-formalization

The repository contains:

• Definitions of basic categorical structures (categories, functors, monoids as categories).

• Examples and proofs written in Agda.

• Supporting modules for equational reasoning and types.
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