Category Theory Formalization in Agda EAFIT - UdeA seminar

José Ramírez-Gómez

Universidad EAFIT

May 2025

What is Category Theory?

Category theory is a branch of mathematics that:

- Studies connections between different ideas.
- Allows us to understand order and structures.
- Focuses on relationships.
- Helps to see under which context things are equivalent.

Commutative Diagrams

Idea

A commutative diagram is a diagram in which all paths that start and end at the same point determine the same result.

Example

Definition (Category)

A category ${\mathcal C}$ consists of [6]:

- A collection of objects, Obj(C), denoted by letters A, B, C, etc.
- A collection of arrows or morphisms, Mor(C), denoted by letters f, g, h, etc.
- Two maps, dom, cod : Mor(C) → Obj(C), assigning to each arrow f its domain dom(f) and codomain cod(f). For an arrow f with domain A and codomain B, we write f : A → B.
- For each pair of objects A, B, we define the set

 $\operatorname{Hom}(A,B) := \{ f \in \operatorname{Mor}(\mathcal{C}) \mid f : A \to B \}$

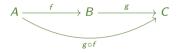
which we call a *Hom-set*.

Definition (Category)

• For any triple of objects A, B, C, the composition of morphisms,

 \circ : Hom $(A, B) \times$ Hom $(B, C) \rightarrow$ Hom(A, C).

Given $f \in Hom(A, B)$ and $g \in Hom(B, C)$, we write $g \circ f$ to denote the composition g after f.



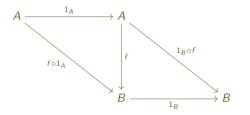
• For each object A, an identity arrow, $\mathbf{1}_A : A \to A$.

Definition (Category)

Such that the following axioms hold:

• Identities: For any morphism $f : A \rightarrow B$, we have

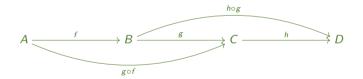
$$f\circ \mathbf{1}_A=f=\mathbf{1}_B\circ f.$$



Definition (Category)

• Associativity: For any morphisms $f : A \rightarrow B$, $g : B \rightarrow C$, $h : C \rightarrow D$, we have

 $h \circ (g \circ f) = (h \circ g) \circ f$



Example: Set

Set is the category in which:

- Objects: Sets.
- Arrows: Functions between sets.
- Identity arrow: Is the identity function

 $\mathbf{1}_X:X o X$ $x\mapsto x$

• **Composition:** Is the composition of functions. If $f : X \to Y$ and $g : Y \to Z$ are two functions, then

 $g \circ f : X \to Z$ $x \mapsto g(f(x))$

is their composite function.

Example: Natural Numbers

Starting from the natural numbers, we can construct a category as follows:

- **Objects:** Natural numbers 0, 1, 2, 3,
- Arrows: $A \longrightarrow B$ whenever $A \leq B$.
- Identity: Is given by the reflexivity of \leq , that is, every natural number is less than or equal to itself.
- Composition: Is given by the transitivity of \leq , that is, if $a \leq b$ and $b \leq c$ then $a \leq c$.

What does this category look like?

What is Agda?

- Dependently typed programming language.
- Proof assistant.
- It is based on intuitionistic type theory.

Agda: Basic Concepts

Inductive definition of $\mathbb N$

In Agda we can define the set $\mathbb N$ inductively as follows

data Nat : Set where zero : Nat suc : Nat ightarrow Nat

What is a term of this type?

If we want to write the number 7, we can do this

x : Nat
x = suc (suc (suc (suc (suc (suc zero))))))

Agda: Basic Concepts

What is a term of this type?

Since writing numbers in that way is inconvinient we can use flags to make our lifes easier.

```
{-# BUILTIN NATURAL Nat #-}
y : Nat
y = 7
```

Operations on \mathbb{N}

Since we have defied $\ensuremath{\mathbb{N}}$ we can define addition inductively as follows

1	_+_	:	Nat	t	\rightarrow	Na	it \rightarrow	Nat	;	
2	zero			+	n	=	n			
3	(suc	n	n) •	+	n	=	suc	(m	+	n)

Agda: Basic Concepts

Owr first proof

Lets show that 2 + 3 = 5

```
_{-} : 2 + 3 \equiv 5
               begin
                  2 + 3
               \equiv \langle \rangle -- is shorthand for
                  (suc (suc zero)) + (suc (suc (suc zero)))
               \equiv \langle \rangle -- inductive case
                  suc ((suc zero) + (suc (suc zero))))
               \equiv \langle \rangle -- inductive case
0
                  suc (suc (zero + (suc (suc (suc zero)))))
10
               \equiv \langle \rangle -- base case
11
                  suc (suc (suc (suc zero))))
12
               \equiv \langle \rangle -- is longhand for
13
                  5
14
15
```

Formalization: Category

Now that we have all the background needed, we are able to start formalizing things. First of all we need to define what is a category in Agda

```
record Category : Set 1 where
 2
                  field
                      Obj : Set
                      Hom : Obj \rightarrow Obj \rightarrow Set
 5
 6
                      id : \forall {A} \rightarrow Hom A A
 7
                      \texttt{comp} : \forall \{ \texttt{A} \ \texttt{B} \ \texttt{C} \} \rightarrow \texttt{Hom} \ \texttt{A} \ \texttt{B} \rightarrow \texttt{Hom} \ \texttt{B} \ \texttt{C} \rightarrow \texttt{Hom} \ \texttt{A} \ \texttt{C}
 8
 9
                      assoc : \forall {A B C D} (f : Hom A B) (g : Hom B C) (h : Hom C D) \rightarrow
10
                                     comp f (comp g h) \equiv (comp (comp f g) h)
11
                                  : \forall {A B} (f : Hom A B) \rightarrow comp id f \equiv f
                      idL
12
                                  : \forall {A B} (f : Hom A B) \rightarrow comp f id \equiv f
                      idR
13
```

Category of $\mathbb N$ and \leq

Previously we saw that there is a category whose objects are the natural numbers \mathbb{N} and the arrows are given by the relation \leq . First of all we need to define what does it mean for a natural number to be less than or equal to other natural number.

Category of $\mathbb N$ and \leq

Recall that in this category the identity arrows are given by the reflexivity of the relation \leq so

Composition is given by the transitivity of the relation \leq so

L	\leq -trans	: {k l m : Nat} $ ightarrow$ k \leq l $ ightarrow$ l \leq m $ ightarrow$ k \leq m
2	\leq -trans	\leq -zero $1\leq m$ = \leq -zero
3	\leq -trans	$(\leq -suc \ k \leq 1) (\leq -suc \ l \leq m) = \leq -suc \ (\leq -trans \ k \leq l \ l \leq m)$

We already have the objects and the arrows of the category. What we must do now is prove that the axioms of a category are satisfyed.

Left and right identity

Associativity

Lets show the associativity

1	\leq -assoc : {k l m n : Nat} $ ightarrow$ (f : k \leq l) (g : l \leq m) (h : m \leq n)
2	$ ightarrow$ \leq -trans f (\leq -trans g h) \equiv \leq -trans (\leq -trans f g) h
3	\leq -assoc \leq -zero g h = refl
4	\leq -assoc (\leq -suc f)(\leq -suc g)(\leq -suc h) = cong \leq -suc (\leq -trans-assoc f g h)

Putting all together

We have shown that all the needed properties hold for this category. Now we are able to fill all the gaps in the definition of a Category

ı	natCat : Category
2	natCat = record
3	$\{ Obj = Nat \}$
1	; Hom = $_\leq_$
5	; id = <-refl
5	; $comp$ = \leq -trans
	; assoc = \leq -assoc
	; $idL = \leq -IdL$
	; $idR = \leq -IdR$
	}

Example: Monoids

Definition (Monoid)

A monoid (M, \cdot) is a set M together with a binary operation

 $egin{array}{lll} \cdot & \colon M imes M o M \ (a,b) \mapsto a \cdot b \end{array}$

which satisifes the following axioms:

- Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, for all $a, b, c \in M$.
- Identity existence: there is a unique $e \in M$ such that $a \cdot e = a = e \cdot a$, for all $a \in M$.

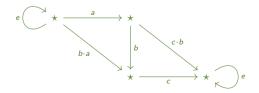
Example: Monoids

A monoid (M, \cdot) can be seen as a category with one object. Let \mathcal{M} be a category defined by:

- There is just one object, say *.
- Any element $a \in M$ is an arrow $a : \star \to \star$ in \mathcal{M} .
- Composition of arrows is the operation of the monoid, that is, if $a, b \in Ar(\mathcal{M})$ then $a \circ b = a \cdot b$.
- The identity arrow 1_{\star} is defined to be the monoid identity *e*.

What does this category look like?

If $a, b, c \in M$ then



Example: Monoids

$(\mathbb{N},+)$

The category associated with this monoid is that one where:

- The object is \star .
- The arrows are the natural numbers: $0, 1, 2, \ldots$
- The identity arrow is 0.
- The composition of arrows is given by the addition of natural numbers +.

(\mathbb{N},\cdot)

The category associated with this monoid is that one where:

- The object is \star .
- The arrows are the natural numbers: $0,1,2,\ldots$
- The identity arrow is 1.
- The composition of arrows is given by the multiplication of natural numbers \cdot .

Definition of monoid

We now formalize the definition of a monoid. This serves as a first step toward interpreting monoids as categories.

Now the data of the category

Objects and morphisms

1	<code>mObj</code> : $orall$ (M : Monoid) $ ightarrow$ Set
2	mObj M = \top
3	
4	mHom : $orall$ (M : Monoid) $ ightarrow o ightarrow$ Set
5	mHom M = Carrier M

Composition and identity

```
1 mComp : \forall (M : Monoid) \rightarrow (a b : Carrier M) \rightarrow Carrier M

2 mComp M = _*_ M

3 mId : \forall (M : Monoid) \rightarrow Carrier M

5 mId M = \varepsilon M
```

And the axioms

Left and right identity

1	<code>mIdL</code> : $orall$ (M : Monoid) $ ightarrow$ (a : Carrier M) $ ightarrow$ _*_ M (mId M) a \equiv a
2	mIdL M f = monIdL M
3	
4	mIdR : $orall$ (M : Monoid) $ ightarrow$ (a : Carrier M) $ ightarrow$ _*_ M a (mId M) \equiv a
5	mIdR M a = monIdR M

Associativity

1	<code>mAssoc</code> : $orall$ (M : Monoid) $ ightarrow$ (a b c : Carrier M)
2	$ ightarrow$ _*_ M a (_*_ M b c) \equiv _*_ M (_*_ M a b) c
3	mAssoc M a b c = monAssoc M

Putting all together

```
cat : \forall (M : Monoid) \rightarrow Category
           cat M = record
2
                  \{ 0bj = m0bj \}
3
                  ; Hom = mHom
                  ; id = mId
5
                  ; comp = _* _ M
6
                  ; assoc = mAssoc
7
                  ; idL = mIdL
8
                  ; idR = mIdR
9
                   }
10
```

Other Examples

- Vect: Objects are vector spaces and morphisms are linear transformations.
- Pos: Objects are partially ordered sets and morphisms are monotonic functions.
- Top: Objects are topological spaces and morphisms are continuous maps.
- Grp: Objects are groups and morphisms are group homomorphisms.

What is a functor?

Functors are the notion of morphisms between categories.

Definition (Functor)

Let C and D be two categories. A functor $F : C \to D$ consists of two morphisms:

- **Object morphism:** $F_0 : Obj(\mathcal{C}) \to Obj(\mathcal{D})$, which assigns to each object $A \in \mathcal{C}$ an object $F_0(A) \in \mathcal{D}$.
- Arrow morphism: $F_1 : \operatorname{Ar}(\mathcal{C}) \to \operatorname{Ar}(\mathcal{D})$, which assigns to each morphism $f : A \to B$ in \mathcal{C} a morphism $F_1(f) : F_0(A) \to F_0(B)$ in \mathcal{D} .

These must satisfy the following conditions:

- Identity preservation: $F_1(\mathbf{1}_A) = \mathbf{1}_{F_0(A)}$ for all objects A in C.
- Composition preservation: F₁(g ∘ f) = F₁(g) ∘ F₁(f) for all composable morphisms f : A → B, g : B → C in C.

Formalization: Functor

The last formalization we present is that of a functor

Functor

```
record Functor (C_1 D_1 : Category) : Set_1 where
                 private
                  module C = Category C_1
                  module D = Category D_1
                 field
                   F_0 : C.Obj \rightarrow D.Obj
8
                   F_1: \forall {A B} (f : C. Hom A B) \rightarrow D. Hom (F_0 A) (F_0 B)
9
10
                    id : \forall {A} \rightarrow C. Hom A A \equiv D. Hom (F<sub>0</sub> A) (F<sub>0</sub> A)
11
                    comp : \forall {A B C} (f : C. Hom A B) (g : C. Hom B C) \rightarrow F_1 (C. comp f g)
12
                             \equiv D.comp (F_1 f) (F_1 g)
13
```

Future Work

- Formalize examples of functors.
- Prove some theorems about categories.
- Build more examples.

Thanks!

Appendix

Agda: Equality and Proofs

Propositional equality \equiv and constructor refl

In Agda, propositional equality is defined as:

```
data _=_ {A : Set} (x : A) : A \rightarrow Set where refl : x \equiv x
```

- $x \equiv y$ is the type of proofs that x and y are equal.
- refl is the canonical proof that any value is equal to itself.

Function congruence: cong

cong : \forall {A B : Set} {x y : A} \rightarrow (f : A \rightarrow B) \rightarrow x \equiv y \rightarrow f x \equiv f y

• If $x \equiv y$, then applying the same function f to both sides preserves equality: $fx \equiv fy$.

Code Repository

The code used in this presentation is available at the following GitHub repository:

Formalization of Category Theory in Agda

https://github.com/jmramirez1204/category-theory-formalization

The repository contains:

- Definitions of basic categorical structures (categories, functors, monoids as categories).
- Examples and proofs written in Agda.
- Supporting modules for equational reasoning and types.

References I

S. Abramsky and N. Tzevelekos.

Introduction to Categories and Categorical Logic, page 3–94. Springer Berlin Heidelberg, 2010.

Agda Development Team.

Agda: A dependently typed functional programming language. https://github.com/agda/agda, 2025.

Available on GitHub. Accessed: 2025-05-18.

Category Theory. Oxford Logic Guides. OUP Oxford, 2010.

J. Z. Hu and J. Carette.

Formalizing category theory in agda.

In Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 327–342, 2021.

References II

T. Leinster.

Basic category theory, 2016.

S. Mac Lane.

Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.